
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1014

A survey on analysing the crash reports of software applications

Asha Ramaraddi Belahunashi1, Pushpalatha M N2

1Student, Dept. of ISE, M S Ramaiah institute of technology, Karnataka, India
2Asst. professor, Dept. of ISE, M S Ramaiah institute of technology, Karnataka, India

---***---

Abstract - Software crash is a serious problem in
production environment. , when it crashes the crash report is
generated and it is sent to developers to debug based on user
permission. These crash reports are received by error
reporting systems for example windows has windows error
reporting system to efficiently handle the crash reports. These
crash reports are stored into set of buckets. These buckets may
contain duplicate crash reports which are produced by the
same bug. The information stored in bucket helps the
developer to prioritize the bugs to be fixed. If bucket contains
duplicate crash reports it takes developer more time to fix bug
and it decreases the efficiency of the bucketing system. Hence
we reviewed some existing methods to analyse the crash
reports and some methods to group them.

Key Words: Crash reports, Bucketing, Mozilla error
reporting system, Stack traces, Windows error reporting
system.

1. INTRODUCTION

 Crashes in software are the more sever facts in software
bugs. crashes are given top priority to be fixed. To overcome
this problem many crash reporting system like windows
error reporting system[5],Apple crash reporting
system[1],and Mozilla crash reporting system[14] are
developed. This error reporting system collects crash
reports from end user during the time of crash. Software
development team spends more time and resource on
testing the software before releasing it. But the software still
contains bugs. These bugs will cause the crash. When crash
occurs the crash reports are sent to error reporting system
like servers. Example WER servers in windows error
reporting system [5]. These servers organize the crash
reports into multiple buckets and automatically convert
them into bug reports. The bug reports finally sent to
software developer to fix it [21] as shown in the fig 1.

These crashes are due to executing invalid machine
instructions some other causes are incorrect address in
program counter, buffer overflow and triggering the
unhandled exception. These crash reports contain
information like application name, application version,
application build date, module name and version, module
build date and module offset which is crashed and its call
stack traces. These information helps the developer to
determine the reason for crash[5,17].In many cases, more
number of crash reports are generated. In such cases crash
reports generated by the same bug and they are called
duplicate crash reports. So it is important to make theses

duplicate crash reports to organize in one group it reduces
the debugging time and effects of the developers.

Fig -1 :An overview of crash reporting system

Crash reports in windows error reporting are grouped
according to buckets. These buckets contain crash reports
which are caused by the same bug. Many methods are used
to generate the buckets [5].Based on the number of crash
reports stored in each bucket bug fixing efforts are
prioritized by the developers. A bucket with large number of
crash reports are investigated with high priority compared
to bucket with small number of crash reports. It is common
that crashes generated by one bug is spread to more than
one bucket(the “Second bucket problem”)[5].One more
problem in WER is only one or few crash reports are present
in buckets(The “long tail” problem). These bucketing
problem decreases the effectiveness of prioritizing the bugs
to be fixed and problem diagnosis.

In recent years, methods for determining the
duplicate crash reports are proposed by many researchers.
Liu and Han[11] proposed R-Proximity, in which two failed
crash traces are similar if they have same fault locations
which are determined by fault localization method. Bartz et
al[3] proposed a method which uses a call stack similarity to
determine duplicate crash reports. These methods requires
some parameters to be tuned and automatic learning of
these optimal values of the parameters requires more
computational cost and it is difficult to implement. Lohman
et al [12] proposed a method for quick identification of the
duplicate crash reports. In this method the formation of
similarity matrix is different. Modani et al [13] proposed a
method in which known crash problems are determined
based on call stack similarities. In this method they proposed

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1015

two similarity matrics, top-k indexing and inverted index.
The crashes are similar if the top-k frames are same in both
call stacks. In inverted indexing if more function are similar
between two stacks then they have higher similarity. The
crash reports organized by bug tracking system contain
information about bug and they are treated as text
documents. Some researchers proposed methods for
information retrieval techniques to determine the textual
similarity between the two crash reports[16].Wang et al[19]
combined both textual similarity and execution stack trace
similarity to determine the duplicate crash reports.
Accuracies in their methods are found around 40% to
60%.Debug advisor[2] is one more recommended system
which helps to determine duplicate crash reports and it also
provides information which is use full for debugging. It also
use call stack similarity to find the similarity of crash reports.

This document is template. We ask that authors follow some
simple guidelines. In essence, we ask you to make your paper
look exactly like this document. The easiest way to do this is
simply to download the template, and replace(copy-paste)
the content with your own material. Number the reference
items consecutively in square brackets (e.g. [1]). However
the authors name can be used along with the reference
number in the running text. The order of reference in the
running text should match with the list of references at the
end of the paper.

2. BACKGROUND

2.1Some of the existing methods to analyse the
crash reports and methods to fix the crash

 2.1.1 Measuring the similarity in bug reports

Bogdan Dit[6] proposed a method for measuring textual
coherence of user comments in the bug reports. These
textual coherence in the user comments may affect the
comprehensibility of bug reports hence it is very important
to measure the textual coherence. Latent Semantic
Analysis[LSA][7,9], is a statistical method for determining
the meanings of words in natural language. This method is
used to measure the textual coherence of natural language
texts. This method also helps to extract the information in
stack traces and source code and helps in the automatic
assessment of bug reports.

2.1.2 Debugging large crash reports

Windows error reporting system collects the billions of
crash reports and it automatically classifies the errors into
buckets[8]. The software components grow to large number
in the single system. With large number of components, it is
very difficult to isolate the main cause of the crash. WER uses
a progressive approach to collect crash data and helps the
developers to collect detailed information when required.
WER uses error statistics as a tool in debugging; this helps

developers to isolate the bugs that could be found at smaller
scale.

2.1.3 Classifying the crash reports to fix the bugs

Tejinder Dhaliwal [10] proposed Two-Level grouping
approach of crash reports. This approach is efficient because
it compares only top method signature of the stack traces. In
this method crash-type may contain crash-reports caused by
multiple bugs. Hence the author suggested two level
grouping approaches. In first level grouping it clusters the
crash reports based on the top method signature of the stack
traces to form crash-types. The subgroups within a crash
type create the second level grouping and it helps developers
to analyse and file bugs. This method uses Lowenstein
distance [20] to determine the similarity between stack
traces.

2.1.4 Crash analysis in windows

Analysis of crash or data failure is important for system
designers and developers to improve operating system
dependability [4]. Most of the operating systems crashes are
due to poorly written device driver’s codes. The system
designers must analyse the data and it helps to understand
the root failure caused in the system and helps to build more
stable and resilient system. Analysing the failure data or
crash reports helps to improve the quality of service.

2.1.5 Locating faulty function based on crash stack
information in crash reports

Software often crashes. When crash happens, the crash
report with is sent to the development team. Software
development team may receive hundreds of stack traces
from all deployment sites and many stack traces may be due
to same problem. It takes longer duration of time for
developer to analyse each traces. Hence Rongxin Wu [15]
proposed a crash Locator, a method used to automatically
locate the faulty function by generating approximate crash
traces by expanding the crash traces. After obtaining the
complete stack trace the cyclometric complexity, Functional
Frequency, Inverse Bucket Frequency, Average Distance to
crash point values are calculated and obtain the overall score
and based on the obtained score the functions are ranked
and this information is useful for the developers for fixing
the problems.

2.1.6 Refresh: a tool used for capturing and
reproducing crash reports

Many programs have hidden bugs that cause the program to
fail. To fix this problem, it will be difficult to reproduce the
failure consistently. Reproducing a failure will be more
difficult and takes longer duration of time, especially when
the failure is discovered by a user in a deployed application.
It is difficult to find and eliminate a software failure, and
especially to verify a solution, without the ability to
consistently reproduce the failure. S. Artzi [18] proposed a

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1016

method ReCrash which has two phases. First phase is
monitoring phase in which ReCrash maintains a shadow call-
stack containing partial state of the arguments to the
methods on the original call-stack. When the program fails
(i.e., crashes), ReCrash serializes the shadow stack contents,
including all heap objects referred to from the shadow stack.
Second phase is Test Case Generation ReCrash generates
candidate tests by calling methods from the de-serialized
shadow call stack. Each test executes the original method
using the de-serialized receiver and arguments (stored at the
time of the crash). ReCrash outputs multiple tests to create a
better view of the failure for the developer.

3. CONCLUSIONS

This paper reviewed the existing methods to analyse the
crash reports and methods to group the crash reports to fix
the bug. For analysing the crash reports more works like
Crash reporting system, Replication of crashes, predicting
the modules which are prone and statistical debugging are
reviewed. This method helps to reduce the debugging effort
and time of the developers and also helps to prioritize which
bugs needs to be fixed first.

ACKNOWLEDGEMENT

 I thank all faculty members of Department of Information
Science, MSRIT and also thanks to the management of
MSRIT, Bengaluru for providing the academic and research
atmosphere at the institute.

REFERENCES

[1] Apple, “Technical Note TN2123: Crash Reporter”,

2010, available at
http://developer.apple.com/library/mac/#technot
es/tn2004/tn2123.html.

[2] B. Ashok, J. Joy, H. Liang, S. Rajamani, G. Srinivasa,
and V. Vangala, DebugAdvisor: A Recommender
System for Debugging, in Proc. ESEC/FSE'09,
Amsterdam, The Netherlands, August 2009. pp.
373-382.

[3] K. Bartz, J. W. Stokes, J. C. Platt, R. Kivett, D. Grant, S.
Calinoiu, and G. Loihle, "Finding similar failures
using call stack similarity," in Proceedings of the
Third conference on Tackling computer systems
problems with machine learning techniques. San
Diego, California: USENIX Association, 2008.

[4] A. Ganapathi, V. Ganapathi, and D. Patterson,
"Windows XP kernel crash analysis," in Proceedings
of the 20th conference on Large Installation System
Administration. Washington, DC, USENIX
Association, 2006, pp. 12-12.

[5] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V.
Orgovan, G. Nichols, D. Grant, G. Loihle, and G. Hunt,
"Debugging in the (very) large: ten years of
implementation and experience," in Proceedings of

the ACM SIGOPS 22nd symposium on Operating
systems principles. Big Sky, Montana, USA: ACM,
2009, pp. 103-116.

[6] Bogdan Dit, Denys Poshyvanyk, Andrian Marcus ,”
Measuring the Semantic Similarity of Comments in
Bug Reports” , Department of Computer Science
Wayne State University Detroit Michigan 48202.

[7] Deerwester, S., Dumais, S. T., Furnas, G. W.,
Landauer, T. K., and Harshman, R., "Indexing by
Latent Semantic Analysis", Journal of the American
Society for Information Science, vol. 41, 1990, pp.
391-407.

[8] Kirk Glerum, Kinshuman Kinshumann, Steve
Greenberg, Gabriel Aul, Vince Orgovan, Greg
Nichols, David Grant, Gretchen Loihle, and Galen
Hunt, “ Debugging in the (Very) Large: Ten Years of
Implementation and Experience” , Microsoft
Corporation One Microsoft Way Redmond, WA
98052.

[9] Dumais, S. T., "Improving the retrieval of
information from external sources", Behavior
Research Methods, Instruments, and Computers,
vol. 23, no. 2, 1991, pp. 229 - 236.

[10] Tejinder Dhaliwal, Foutse Khomh, Ying Zou,
“Classifying Field Crash Reports for Fixing Bugs : A
Case Study of Mozilla Firefox” , Dept. of Electrical
and Computer Engineering, Queen’s University,
Kingston

[11] C. Liu and J. Han, Failure Proximity: A Fault
Localization-Based Approach, in Proc FSE'06,
Portland, OR, 2006, pp. 286-295.

[12] G. Lohman, J. Champlin, and P. Sohn. 2005. Quickly
Finding Known Software Problems via Automated
Symptom Matching. In Proceedingsof the Second
International Conference on Automatic Computing
(ICAC '05). IEEE Computer Society, Washington, DC,
USA, 101-110.

[13] N. Modani, R. Gupta, G. Lohman, T. Syeda-Mahmood,
and L. Mignet, Automatically identifying known
software problems. In ICDE Workshops, pages 433–
441, 2007.

[14] Mozilla, "Crash Stats", 2010, http://crash-
stats.mozilla.com.

[15] Rongxin Wu, Hongyu Zhang, Shing-Chi Cheung, and
Sunghun Kim, “CrashLocator: Locating Crashing
Faults Based on Crash Stacks” , Department of
Computer Science and Engineering, The Hong Kong
University of Science and Technology, Hong Kong,
China

[16] P. Runeson, M. Alexandersson, and O. Nyholm,
Detection of Duplicate Defect Reports Using Natural
Language Processing, in Proc. ICSE 2007,
Minneapolis,USA, May 2007. pp. 499-510.

[17] A. Schröter, N. Bettenburg, and R. Premraj, “Do
stack traces help developers fix bugs?”, in Proc. MSR
2010, Cape Town, South Africa, May 2010. pp. 118–
121.

http://crash-/
http://crash-/

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1017

[18] Shay Artzi , Sunghun Kim , Michael D. Ernst ,
“ReCrashJ: a Tool for Capturing and Reproducing
Program Crashes in Deployed Applications”

[19] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, "An
approach to detecting duplicate bug reports using
natural language and execution information," in
Proc. ICSE’08, Leipzig, Germany, 2008, pp. 461-470.

[20] J. B. Kruskal. ―An Overview of Sequence
Comparison: Time Warps, String Edits, and
Macromolecules, SIAM Review.Vol. 25, No. 2 (Apr.,
1983), pp. 201-237

[21] Yingnong Dang, Rongxin Wu, Hongyu Zhang,
Dongmei Zhang, and Peter Nobel. Rebucket: a
method for clustering duplicate crash re-ports
based on call stack similarity. In Proceedings of the
34th Inter-national Conference on Software
Engineering, pages 1084–1093. IEEE Press, 2012.

BIOGRAPHIES

Asha Ramaraddi Belahunashi
received B.E(CSE) from Gogte
Institute of Technology, Belgaum.
She is currently Pursuing M.Tech
in MSRIT affiliated to VTU,
Belgaum. Her research interests
include data mining and cloud
computing.

Mrs. Pushpalatha M N, is an
assistant professor in Department
of Information Science and
Engineering at M S Ramaiah
Institute of Technology,
Bangalore-54. Her areas of
interest is Software Engineering
and data mining.She completed
M.Tech in in computer Science
and Engineering from M S
Ramaiah Institute of Technology,
affiliated to VTU.

