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Abstract - Classical wavelet thresholding methods (WTM) is 
used to analyze both the non-stationary and nonlinear time 
series. Yet, the bounded support of underlain time series 
limited the availability of the partial data within its 
boundaries. In addition, large biases at the edges was occurred 
by increasing the bias when a time series data is defined in 
(WTM) which also result in creating artificial wggles. This 
study suggests a new two-stage method to concurrently 
minimize the effect of the boundaries found in (WTM). Local 
Linear Quantile Regression (LLQ) is applied in early stage in 
order to provide more accurate description of damaged or 
noisy data. However, it is assumed that there will be a 
remaining series hidden in the residuals. At second stage 
(WTM) has been applied to the residuals. The final stage is the 
summation of the fitting estimated from both LLQ and (WTM). 
To assess the practical performance of the proposed method a 
simulation was run which shows that the optimized WTM 
could overcome the classical method used in non-stationary 
and nonlinear time series analysis.  

Key Words:   Local Linear Quantile Regression, Wavelet 
Thresholding Methods, Bandwidth Selection, Non-
stationary and Nonlinear Time Series Analysis, Wavelet 
Thresholding Methods - Local Linear Quantile Regression 
(WTM-LLQ).   

1. INTRODUCTION  

Kernel smoothers, trigonometric regressions are among 
those most nonparametric smoothing approaches to 
overcome boundaries problems when dealing with smooth 
functions as suggested by [1]. They believe that polynomial-
trigonometric regression where ƒ is the estimator of a sum of 
trigonometric functions in a low-order Polynomial. The 
latter is expected to account for the boundary problem. They 
also gave an examples were provided to manifest the 
approach and that showed the convergence rates of the 
estimators over a specific smoothness class of functions 
were optimal irrespective of the regression function is being 
periodic or not. [2] Have used a de-noising approach of two-
stage robust based on wavelet thresholding with median 
filter. They study the corrupted data passed the median filter 
at the earliest stage, where the outliers are restrained. Then, 
they obtained an ultimate restructured signal when the data 
is recoiled. The boundary is a key issue in classical wavelet 
thresholding method which is occurred during the 
transformation of the wavelet to a finite signal. Recently, [3] 
introduced a new method based on the concept of pseudo 

data and later developed by them in 2009[4] to include the 
robust thresholding within robust estimation. The practical 
performance of this method can be improved by considering 
the automatic boundary treatment suggested by [5] and [6, 
7]. 

2. Wavelet thresholding methods (WTM) 

The term wavelets is used to refer to a set of orthonormal 
basis functions generated by dilation and translation of a 
compactly supported scaling function (or father wavelet),  ∅, 
and a mother wavelet, φ, associated with an r-regular  

multiresolution analysis of 
2

( )L R  . A variety of different 

wavelet families now exist that combine compact support 
with various degrees of smoothness and numbers of 
vanishing moments[8] and these are now the most 
intensively used wavelet families in practical applications in 
statistics.  Any square integrable function ƒ admits the 
following expansion: 
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Equation (1) suggests the following classical nonlinear 
wavelet regression estimator:  
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Where 

0, , ,
ˆˆ ( / ),d ( / )k i k j k i j ki i

c y i n y i n        

are respectively the empirical scaling and detail coefficients  

and 
, , ,

ˆ ˆ ˆsgn( )max(0, )
j k

s

j k j kd d d       . 

Sometimes the soft-thresholded coefficients 
,

ˆ
j k

sd are 

replaced by the hard-thresholded coefficients   

, , ,
ˆ ˆ ˆ( )H

J K j k j kd d I d    .    

3. Local Linear Quantile (LLQ) Regression 

The seminal study of [9] introduced parametric quantile 
regression, which is considered an alternative to the classical 
regression in both parametric and nonparametric fields. 
Numerous models for the nonparametric approach have 
been introduced in statistical literature, such as the locally 
polynomial quantile regression by [10] and the kernel 
methods by [11]. In this paper, we adopt the LLQ regression 

employed by [12]. Let { ( , ), 1.....,i ix y i n } be bivariate 

observations.  

To estimate the τth conditional quantile function of response 

y and  0,1  , the equation below is defined given 

X x : 

( ) ( / x)Yg x Q           (1) 

  Let  k  be a positive symmetric unimodal kernel function 
and consider the following weighted quantile regression 
problem: 
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where ( ) (( ) / ) /iw x k x x h h  . Once the covariate 

observations are centered at point, the estimate of ( )g x  is 

simply 0   , which is the first component of the minimizer of 

(1), and determines the estimate of the slope of the function 
g  at point x . 

3.1 Bandwidth Selection 

The practical performance of ˆ (x)Q  depends strongly on 

selected of bandwidth parameter. In this study we adopt the 
strategy of [12]. In summary, we have the automatic 
bandwidth selection strategy for smoothing conditional 
quantiles as follows: 

(1) - We use ready-made and sophisticated methods in 

selecting meanh  ; we employ [13] which explored a “direct 

plugin” bandwidth selection procedure which relies on 
asymptotically optimal bandwidth: 
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(2) - We use  to obtain all of the other h    from meanh   .   

and Φ are standard normal density and distribution 

functions, and 
meanh is a bandwidth parameter  for  

regression mean estimation with various existing methods. 
This procedure obtains identical bandwidths for the τ and  

(1 −τ) quantiles. 

3. Proposed Method 

This section elaborates on the proposed method. This 
technique combines WTM and LLQ (WTM-LLQ). Since local 
linear quantile regression produces excellent boundary 
treatment [14], it is expected that the addition of this 
component to Wavelet thresholding methods will result in 
equally well boundary properties. Results from numerical 
experiments extremely support this claim.  The basic idea 
behind the proposed method is to estimate the underlining 

function 𝑓 with the sum of a set of WTM functions, WTMf , 

and an LLQ function, 
LLQf .  That is, 

                         . WTM
ˆ ˆ ˆ
W LLQ LLQf f f    

To obtain the wavelet regression - Local Linear Quantile 

Regression estimate .
ˆ
W LLQf we need to estimate the two 

components: ˆ
wf  and ˆ

LLQf . Inspired by the back-fitting 

algorithm of [15], we propose the following iterative 

algorithm for computing  ˆ
wf  , ˆLLQf  and hence .

ˆ
W LLQf .  

1- Obtain an initial estimate 
0ˆf  or f , and set  

0 0ˆ ˆ LLQf f  

2- For j=1,….., iterate  the following  steps:  

(a) Apply wavelet thresholding to 
1ˆ J

i LLQy f   and    

obtain   WTM
ˆ Jf . 

(b) Estimate ˆ J

LLQf  by fitting local quantile        

regression to WTM
ˆ J

iy f  

3- Stop if  . WTM
ˆ ˆ ˆ
W LLQ LLQf f f     converges. 
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To use the above algorithm, one needs to choose the initial 

curve estimate 
0ˆf  in Step 1 and the smoothing parameter 

for the local quantile fit ˆ J

LLQf  in Step 2(b). For computing 

0   ˆf , we use high-level statistical or mathematical software 

packages (R). 

4. Simulation Study 

In this simulation, the software package R was employed to 
evaluate classical WTM, and the proposed combined method, 
WTM-LLQ. The following conditions were set. 

(1) Eight different test functions. 
(2) Three different values of quantile τ (0.25, 0.50, and 0.75). 
(3) Three different samples size (64,128, and 512). 
 

 

Fig-1: The eight test functions used in the simulation. 

From fig1 we  observed Each function has some abrupt 
changing features such as discontinuities or sharp bumps, 
Note that it is reasonable to assume a periodic boundary 
condition  for Test Function 1,and  2, while for Test  
Functions 3,4,5,6,7 and 8, some boundary adjustment is 
strongly preferred,  Datasets were simulated from each of 
the  test functions with  a Three samples size of  𝑛 = 64,128 
and 512. And level of signal-to-noise ratio (snr) were chosen: 

snr = 2, where snr is defined as /snr f   , For each 

simulated dataset, the above two methods were applied to 
estimate the test function. In each case, 500 replications of 
the Three samples size 𝑛 = 64,128 and 512 were made. 
Throughout the whole simulation and for all the above two 
methods, the empirical Bayes procedure EBayes Thresh of 
[16] was used as the thresholding rule. The mean squared 

error (MSE) was used as the numerical measure to assess 
the quality of the estimate. The MSE was calculated for those 
observations that were at most 10 sample points away from 
the boundaries of the test functions:  
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Where 

       1, , , 1, , .  N n n     (See [17]) 

To gain an idea of how the two methods perform near the 
boundaries, we calculated the following MSE values for 
observations near the boundaries. (See table 1, 2, and 3). 

Table -1: The MSE of the classical (WTM) and proposed 
method under different values of quantile τ (0.25, 0.50, and 
0.75), and sample size 64 
 

N=64 

0.25τ    0.50τ 0.75τ  

Test 
functions 

Mse 
(WTM) 

Mse 
(WTM-

LLQ) 

Mse 
(WTM) 

Mse 
(WTM-

LLQ) 

Mse 
(WTM) 

Mse 
(WTM-

LLQ) 

0.038068 0.008927 0.055567 0.008536 0.041797 0.008062 Test 
function1 

0.01865 0.004483 0.013284 0.005595 0.011419 0.004113 Test 
function2 

0.002951 0.010852 0.004321 0.004826 0.004318 0.007669 Test 
function3 

0.16709 0.058852 0.296407 0.030474 0.188786 0.056252 Test 
function4 

0.05906 0.007155 0.080712 0.005344 0.04047 0.01291 Test 
function5 

0.044433 0.020049 0.035673 0.006224 0.043078 0.011173 Test 
function6 

0.195941 0.043316 0.132807 0.06412 0.137736 0.071131 Test 
function7 

0.027108 0.00254 0.017944 0.001327 0.025158 0.002528 Test 
function8 

 
 
Table -2: The MSE of the classical (WTM) and proposed 
method under different values of quantile τ (0.25, 0.50, 
and 0.75), and sample size 128 
 

N=128 

0.25τ    0.50τ 0.75τ  

Test 
functions 

Mse 
(WTM) 

Mse 
(WTM-

LLQ) 

Mse 
(WTM) 

Mse 
(WTM-

LLQ) 

Mse 
(WTM) 

Mse 
(WTM-

LLQ) 
0.027282 0.005927 0.022437 0.006085 0.045048 0.001319 Test 

function1 
0.017169 0.004024 0.01768 0.004223 0.014359 0.003127 Test 

function2 

0.004392 0.007799 0.00256 0.004495 0.001353 0.003644 Test 
function3 

0.161533 0.005915 0.151319 0.025233 0.139156 0.019152 Test 
function4 

0.060219 0.004296 0.034583 0.003535 0.029358 0.006106 Test 
function5 

0.023229 0.007202 0.025203 0.003111 0.027534 0.004154 Test 
function6 
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0.144393 0.0412 0.142712 0.025159 0.122704 0.030169 Test 
function7 

0.008262 0.001354 0.01128 0.000709 0.012015 0.000563 Test 
function8 

 
 
Table -3: The MSE of the classical (WTM) and proposed 
method under different values of quantile τ (0.25, 0.50, and 
0.75), and sample size 512 
 

N=512 

0.25τ    0.50τ 0.75τ  

Test 
functions 

Mse 
(WTM) 

Mse 
(WTM-

LLQ) 

Mse 
(WTM) 

Mse 
(WTM-

LLQ) 

Mse 
(WTM) 

Mse 
(WTM-

LLQ) 
0.013169 0.000708 0.013343 0.000762 0.018025 0.000754 Test 

function1 
0.014321 0.002368 0.013253 0.002364 0.007252 0.002472 Test 

function2 

0.001636 0.001719 0.001452 0.001499 0.002233 0.002043 Test 
function3 

0.046979 0.000798 0.054339 0.002768 0.049901 0.005368 Test 
function4 

0.019046 0.00190 0.011604 0.001568 0.022847 0.001743 Test 
function5 

0.00943 0.001904 0.013981 0.001791 0.017428 0.001523 Test 
function6 

0.042798 0.009245 0.05849 0.005955 0.066047 0.00888 Test 
function7 

0.013628 0.000538 0.011871 0.000342 0.008978 0.000685 Test 
function8 

 
To compare the methods, Tables 1, 2, and 3 present the 
numerical results of the classical (WTM) with respect to the 
proposed method. 

Results 

Tables 1, 2, and 3indicated that proposed method performs 
better in terms of boundary assumptions, noise structures  
and test functions,  under different  samples size and values 
of quantile than the classical WTM. 

It is therefore understood that Wavelet Thresholding 
Methods - local linear quantile regression WTM-LLQ is 
highly recommended in handling issues of boundaries in 
wavelet regressions. 

5. Conclusions 

This paper suggested a two-stage method to minimize issues 
in classical WTM boundaries. Coupling LLQ at early stages 
followed by classical WTM combination is the key design of 
the proposed method. A simulation was carried out to test 
the empirical performance of the method through different 
numerical experiments and real data application. Findings 
from this research indicated that WTM can be improved and 
resolve issues of boundaries and enhance MSE values. 
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