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Abstract-- Extraction of pattern from data and classifying 
them is very important for dealing with huge amount of data. 
Putting similar data into groups is called Data Clustering. 
Clustering algorithm partitions dataset in to various groups 
such that groups have similarities. This paper presents 
comparison between some common document clustering 
techniques.  In particular, we compare the most 
representative offline clustering techniques: Fuzzy C means 
clustering, K-means clustering, Subtractive clustering, and 
Mountain clustering. The accuracy and performance of above 
four is tested on various aspects. 
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I. INTRODUCTION 

 
 Discovering groups and identifying interesting patterns is 
process of clustering. It is an effective approach for finding 
relations in data [1]. The concept of clustering, or data 
grouping is nearer to how human thinks and it is also very 
common in nature; we always try to summarize the data in 
to small groups whenever we got large amount of data.it 
helps to perform analysis over it. Moreover, generally the 
data that we have in many problems have natural groupings 
because of some intrinsic properties.it is really a tough 
process for human to recognizing that property and 
combined them in to a group because of that property.it is 
easy to recognize low dimensional data but hard to 
recognize the data that has higher dimensionality. This is 
why the computing methods came to reduce the human 
effort and make it more accurate in less time. The subject of 
the paper “Data Clustering Methods”. The clustering 
algorithm is not important for categorizing the data but it 
also help for data compression and constructing different 
models.  

The similarities in data helps to express the data by using 
fewer examples. If we are able to find how the data is 
grouped, then we can easily from a model of the problem 
based on those clusters.  

In this paper, four of the most representative off-line 
clustering techniques are reviewed: 

• K-means (or Hard C-means) Clustering,  

• Fuzzy C-means Clustering,  

• Mountain Clustering, and  

• Subtractive Clustering. 

 These clustering techniques are generally used in 
conjunction with Fuzzy Modelling [2] and radial basis 
function networks (RBFNs). The results that are shown in 
this paper are comparative study of different techniques and 
the effect of different parameters in the process. 

Earlier explained, data clustering is partitioning of a data set 
into several groups such that the similarity within a group is 
larger than that among groups. This implies that data have 
some inherent property; otherwise if we perform uniform 
distribution, then we can’t find data clusters, or will lead to 
artificially introduced partitions.  

There may be a problem of overlapping data groups. And 
because of this the efficiency of the clustering degraded, and 
this reduction is proportional to the amount of overlap 
between groupings. The techniques that are used in this 
paper are used in conjunction with other fuzzy models [3] or 
sophisticated neural. Specifically, these techniques can be 
considered as preprocessors for determining the initial 
locations for radial basis functions or fuzzy ifthen rules. We 
approach to find the cluster center to represent each cluster. 
A cluster center is a way to tell where the heart of each 
cluster is located, so that later when presented with an input 
vector, the system can tell which cluster this vector belongs 
to by measuring a similarity metric between the input vector 
and all the cluster centers, and finding the nearest cluster.  

Some of the clustering techniques rely on knowing the 
number of clusters a priori. In that case the algorithm tries to 
partition the data into the given number of clusters. Fuzzy C-
means and K-means clustering are of that type. In other 
cases knowing the number of clusters from beginning is not 
necessary; instead the algorithm starts by finding the 
clusters in sorted order like first large cluster, and then goes 
to find the second, and so on. Subtractive and Mountain 
clustering are of that type. In both cases a knowing clusters 
number is useful; however if the number of clusters is not 
known, K-means and Fuzzy C-means clustering cannot be 
used 

II. BACKGROUND AND RELATED WORK 

A. K-Means Algorithm  

The k-means algorithm [Hartigan 1975; Hartigan & Wong 
1979] is by far the most popular clustering tool used in 
industrial and scientific applications. The name comes from 
representing each of k clusters C by the mean (or weighted 
average) c of its points, the so-called centroid. While this 
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obviously does not work well with categorical attributes, it 
has the good geometric and statistical sense for numerical 
attributes. The sum of discrepancies between a point and its 
centroid expressed through appropriate distance is used as 
the objective function. K-means clustering (or Hard C-means 
clustering, as compared to Fuzzy C-means clustering.) This 
technique has been applied to a variety of areas, including 
image and speech data compression, and with the help of 
radial basis function networks data preprocessing for system 
modeling, and task decomposition in heterogeneous neural 
network architectures [4]. This algorithm relies on finding 
cluster centers by trying to minimize a cost function of 
dissimilarity (or distance) measure. 

A set of n vectors xj, j= 1, 2, 3… n. are to be partitioned into c 
groups, Gi, i=1, 2… c. The cost function, based on the 
Euclidean distance between a vector xk in group j and the 
corresponding cluster center ci, can be defined by: 

 

Where is the cost  Function within group i. 

The partitioned groups are defined by a c*n binary 
membership matrix U, where the element uij is 1 if the jth 
data point xj belongs to group i, and 0 otherwise. Once the 
cluster centers ci are fixed, the minimizing uij for Equation 
(1) can be derived as follows: 

 

Which means that xj belongs to group i if ci is the closest 
center among all centers. On the other hand, if the 

membership matrix is fixed, i.e. if uij is fixed, then the optimal 
center ci that minimize Equation (1) is the mean of all 
vectors in group i:   

 

Where | Gi | is the size of Gi, or .  

The algorithm is presented with a data set xi, i= 1, 2, 3, …., n; 
it then determines the cluster centers ci and the membership 
matrix U iteratively using the following steps:  

Step 1: Initialization of cluster center Ci , ranging from 1 to C. 

            Select C randomly from data sets.  

Step 2: Solve Equation (2) and find the membership matrix 
U. 

Step 3: Using equation (1) compute the cost function. Stop if                                                             
it is less than the certain tolerance value or its increment is 
comparatively below over a certain threshold. 

Step 4: Update the values of cluster center using equation 
(3). Go to step 2.  

The initial position of clusters centers a performance factor 
of K-Means algorithm, thus it is preferable to run the 
algorithm more times, each with a different set of initial 
cluster centers. 

B. Fuzzy C-means Clustering  

It relies on the basic idea of Hard C-means clustering (HCM), 
there is a difference that every data point of  Fuzzy C- means  
belongs to a cluster of membership grade whereas the Hard 
C-Means may or may not be belongs to a certain cluster. The 
membership matrix is allowed to store binary values 0 and 1. 
However 

    ;    (4)  

   

For every j belongs to 1 to n. 

The cost function of  Fuzzy C-means Clustering is 
generalization of equation (1): 

 

Where uij € (1,n).ci is the cluster center of fuzzy group dij = 
||ci – cj || is the Euclidean distance between the ith cluster 
center and the jth data point; and m ∈ [1,∞) is a weighting 
exponent. The necessary conditions for Equation (5) to reach 
its minimum are 

Above two condition is required for iteration of the 
algorithm. Fuzzy C-means Clustering determines the Ci and 
the membership matrix U using the following steps in batch 
operation mode: 

Step 1: Find the value between 0 to 1 that satisfies the 
equation (4) and put it in membership matrix U. 
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Step 2: Calculate c fuzzy cluster centers ci where i ranges 1 to 
c, using Equation (6).  

Step 3: Compute the cost function according to Equation (5). 

 Stop if either it is below a certain tolerance value or its 
improvement over previous iteration is below a certain 
threshold.  

Step 4: Compute a new U using Equation (7). Go to step 2. 

Same as earlier stated for K- means performance. It is also 
advisable to start iteration with initial values of membership 
matrix U. 

C. Mountain Clustering  

It is another approach for finding cluster center based on a 
density measure called the mountain function. It is an 
approximation method of finding cluster center, hence it can 
be used as preprocessor for other sophisticated clustering 
methods. Firstly we form a grid on data space, the 
intersection of these grid lines potential to cluster center, 
represented as a set V. Then we generate a mountain 
function representing a data density measure. The height of 
the mountain function at a point v € V is equal to 

 

Where xi is the ith data point and σ is an application specific 
constant.  

D. Subtractive Clustering  

The computation growth exponentially in mountain 
clustering with the dimension of the problem; that is because 
we are evaluating the mountain function at every grid point. 
We can resolve it by using Subtractive Clustering because 
this technique uses data points as candidate for clusters 
centers, instead of grid points. That reduces the computation 
to problem size from problem dimension. However, the 
actual cluster centers are not necessarily located at one of 
the data points, but in most cases it is a good approximation, 
especially with the reduced computation this approach 
introduces.  

Since every data point is a candidate for cluster centers, a 
density measure at data point xi is defined as: 

 

Where ra is a positive constant representing a neighborhood 
radius. Hence, a data point will have a high density value if it 
has many neighboring data points.  

The first cluster center Xc1 is chosen as the point having the 
largest density value Dc1. Next, the density measure of each 
data point Xi is revised as follows:  

 

Where rb is a positive constant which defines a 
neighborhood that has measurable reductions in density 
measure. Therefore, the data points near the first cluster 
center Xc1 will have significantly reduced density measure.  

After revising the density function, the next cluster center is 
selected as the point having the greatest density value. This 
process continues until a sufficient number of clusters is 
attainted. 

III. A COMPARATIVE STUDY OF DATA CLUSTERING 

TECHNIQUES 

Earlier we have explained different clustering with their 
basic mathematical foundations. This section involves the 
comparison of the above explained techniques, and testing 
each one of them on a dataset. Firstly we portioned the 
dataset into two data sets: 2/3 the data for training, and 1/3 
for evaluation. We divide the whole dataset in two cluster; 
Because of higher dimension visual representation is not 
possible; we mainly focus on performance measures rather 
than visual approaches. 

Euclidean distance: similarity between input vector element 
and a cluster center. Since similarity metrics are sensitive on 
large ranges, every input variables must be normalized to 
within the unit interval [0, 1]. 
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A.  K-means Clustering 

In K-means clustering we try to find cluster center by 
minimizing the cost function J. By using Equations (2) and 
(3) we update the membership matrix and cluster center, 
respectively, till no further increment noticed in cost 
function . Because the algorithm initializes the cluster center 
randomly, this affects the performance. That’s why it is 
advisable to have multiple test runs. Accuracy of algorithm 
can be realized by testing the evaluation sets. After the 
determination of cluster center, the evaluation vector 
assigned to their corresponding cluster center on the basis of 
Euclidian distance. Then an error 

Measure is then calculated; we use the root mean square 
error (RMSE) is used for this purpose. We also calculate 

the accuracy percentage. We iterate the algorithm 10 
times for better results. K- Means performance result table 

lists the results of those runs. 

 

Figure 1 shows the plot of costa function over time. 

We performed a regression analysis resultant clustering 
against the original classification. For better performance the 
slope should be nearer to 1. Figure 2 shows the regression 
analysis of the best test case. 

 

 

B. Fuzzy C-means Clustering 

In Fuzzy C-means clustering every data point can have 
different degrees of membership to their respective clusters; 
thus it helps to eliminate the effect of hard membership. This 
approach keep occupying the fuzzy  

Measures as the basis for U (membership matrix) calculation 
and identification of cluster center.  

Fuzzy C-means Clustering starts by assigning random values 
to the U, thus for getting higher probability of good results 
we apply it several times. However, there is no variance in 
accuracy and performance when algorithm tested several 
times. For testing the results, every vector in the evaluation 
data set is assigned to one of the clusters with a certain 
degree of belongingness (as done in the training set). 
However, because the output values is in binary (either 1 or 
0), the evaluation set degrees of membership are defuzzified 
to be tested against the actual outputs.  
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This data clustering has good accuracy and requires less 
number of iterations. Figure 3 shows the accuracy and 
number of iterations against the weighting factor. 

In general, the Fuzzy C-means Clustering technique  

Not good for the selected problem it performs as k- means 
algorithm. Both showed close accuracy; moreover Fuzzy C-
means Clustering is slower because of fuzzy calculations. 

C. Mountain Clustering                                          
In this clustering technique we divide data space in to grid 
points and then calculate the mountain function at every grid 
point. Mountain function represents the density of the data 
point. The performance of the  
Mountain clustering is gravely affected by the dimension of 

the problem. The computation rises exponentially because 
the mountain function is calculated at every grid point. For a 
problem with c clusters, k dimensions, j data points, and a 
grid size of t per dimension, the required number of 
calculations is:    

N = j * tk + (c-1) * tk                              (12)  

So for any problem, with input data of 14 dimensions, 210 
training inputs, and a grid size of 10 per dimension, the 
required number of mountain function calculation is 
approximately 2.01 * 1015 calculations.  

D. Subtractive Clustering 

It is very similar to the mountain clustering, there is a bit 
difference that we calculate density function at every data 
point only. And the data points itself are the candidate for 
the cluster centers. This reduces the computation and 
making it possible in linear time whereas in case of 
mountain it was exponential. For a problem of c clusters and 
j data points, the required number of calculations is:   

N = j2 + (c - 1) j 
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This algorithm does not rely on any randomness, so the 
results are fixed. However, we can test the effect of the two 
variables ra and rb on the accuracy of the algorithm.  

Those variables represent a radius of neighbourhood after 
which the effect (or contribution) of other data points to the 
density function is diminished. Usually the b r variable is 
taken to be as 1.5 ra.. 

We can not take ra very large or small t is clear from the plot 
because if we take it tto small then the density function will 
not going to effect on neighbouring data Points [5] ; if we take 
it very large then the density function will affected by the 
neighbouring data points. So ra should contain a value 
between 0.4 to 0.7[6][7]. 

 

As summary best achieved from the above study is stated 
below in the form of performance chart. 

We have earlier explained the four data clustering 
techniques. Let’s see the comparison: 

 

 

Algorithms 

Comparison Aspect 

RMSE Accuracy Regression 

Line Slope 

Time 

(sec) 

K-Means 0.445 80.0% 0.62 0.9 

FCM 0.468 78.0% 0.553 2.21 

Mountain 0.470 78.0% 0.557 118.1 

Subtractive 0.52 75.0% 0.5073 3.61 

From this comparison we can conclude some remarks: 

• K-means clustering has higher accuracy, lower RMSE and 
required less time. 

 • Mountain required huge time for large calculation. 

 • Mountain clustering is suitable for less dimension data 
sets.  

•Fuzzy c- means is closer to k means but more time to 
calculate fuzzy functions [8][9].  

• In subtractive clustering, one has to very careful for 
selecting the value of the neighbourhood radius ra.  

•Since none of the algorithm is best suited for the problem of 
higher dimension with overlapping in some of the 
dimension. 

IV. CONCLUSION AND FUTURE WORK 

 
We have reviewed four data clustering technique in this 
paper, namely: Fuzzy C-means clustering, K-means 
clustering, Subtractive clustering and Mountain clustering. 
The approaches solves the problem by portioning the data 
set in to cluster based on some similarity measures. The four 
methods have been implemented and tested against a data 
set .The problem presented has a high number of 
dimensions, which might involve some complicated 
relationships between the variables in the input data. 

 We will try to give an algorithm for clustering that 
have better accuracy and performance for higher dimension 
data sets.  
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