
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 05 | May -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 230

A Comparative Study of Database Connection Pooling Strategy

Sohel S. Shaikh1, Dr. Vinod. K. Pachghare2

1Student, Dept. of Computer Engineering, College of Engineering Pune, Maharashtra, India
2Associate Professor, Dept. of Computer Engineering & IT, College of Engineering Pune, Maharashtra, India

---***---

Abstract - In recent times, with fast advancement in
technology there is a faster need for reducing the dormant
user time while interacting with software applications. Every
application makes a use of databases to store their data for
several purposes. The conventional database is a good fit for
application with fewer database interactions. As the number
of interactions increases the load on the application increases
thus leading to rise in response time. This paper proposes a
novel technique of database interaction with the advent of
database Connection Pooling. It details about the proposed
model and elaborates its working principle. The proposed
methodology advances the efficiency of accessing database
significantly.

Key Words: Database Connection Pooling, persistent
systems, performance optimization.

1. INTRODUCTION

In today’s world, there is enormous data available. These
data have a great potential to expand ones’ information base.
These data are needed to be stored and well retrieved as and
when obligatory. To stock this data databases are used.
Database is a set of information that is schematized so that it
can be fluently retrieved, sustained and restructured. To
smoothen these actions a database management system is
established. Connections are developed to communicate
with these database management systems. For every request
a connection is formed, resources such as locks,
transactional logs, etc. are assigned. These connections are
luxurious to create, owing to the overhead of starting
network acquaintances and adjusting database connection
sessions in back-end chronicles. Database resources such as
locks, memory cursors, transaction logs, statement handles
and temporary tables increase with increase in the number
of concurrent connection sessions. [1]

In such scenarios, there is a compulsive need for an
alternative mechanism called the Database Connection
Pooling. Database Connection Pooling is a reserve of live
database connections. The admission of Database pools
facilitates faster connection of applications with the database
management systems. Also, the chief feature is that the
connections within a pool can be reused once its purpose is
accomplished. This paper proposes a model implementing
connection pools and provides the comparison among the

applications developed using traditional database and
database connection pools.

The paper progresses as follows:

Section 2 provides insight about the existing conventional
database connection. Section 3 gives an overview of the
Database Connection Pooling. Section 4 delivers the
proposed methodology. Section 5 details the features that
were set for the proposed system implementations. Section 6
describes the experimental results by comparing the
different techniques. Section 7 concludes the
accomplishments of the paper.

2. CONVENTIONAL DATABASE CONNECTION
TECHNIQUE

Fig 1: Conventional Database Connection

At the present time, web applications have become an
inevitable necessity for every individual. Such applications
necessitate run time processing of requests from the users.
Database connections are to be established on the fly to
facilitate these huge number of requests. This implies
substantial load on the servers to create a connection for
every request from scratch, allocate resources and close the
connections. Hence runtime creation of such connections
becomes too expensive. Also, garbage collection becomes an
additional overhead. Connection initialization involves time
consuming processing to perform user authentication,
establishing transactional contexts and establishing other
aspects of session that are required for succeeding database
usage. It is not only expensive to create but also expensive to
maintain overtime. In addition, if the connections are left
opened even after completion of tasks, it may lead to more
serious issues like memory leakage leading the application to
break.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 05 | May -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 231

The correct remedy for avoiding such critical scenarios is use
of Database Connection Pooling. It is well elaborated in the
next section.

3. DATABASE CONNECTION POOLING

Database connection pools are a group of live connections to
the database systems. They are maintained by the
applications which require frequent connections to be
established with the database. On every connection request,
a connection is pulled from the pool and the demand is
sufficed. This enhances performance of applications and
facilitates efficient concurrency and scalability. It reduces or
nearly eliminates the waiting time of applications requesting
a connection. Furthermore, use of connection pooling is
transparent, it does not hinder the business applications in
any way. They do not require any modifications for
communicating with the database pools. The pools can be
tweaked and tuned by application administrators without
the knowledge of the applications. If the applications use
generic JDBC connections, one could simply point it at
different vendors’ database without even altering any code.

The system performances are enhanced by using database
connection pools as it reduces the frequency of creating and
closing database connections. Also, it provides flexibility in
creating, configuring and closing connection pools. It further
enhances the stability in interaction with the databases.

The basic requirement of connection pooling is to
predetermine the number of connections provided by the
database systems during the initialization stage of
application system, that are to be accommodated within the
memory called the database connection pools. These pools
are to be organized by using container objects such as
Vector, Stacks, etc. Thus, the applications only have the
overhead for creating these connections in the beginning and
closing them after conclusion of the tasks. It is relieved of the
operations of acquiring connections and terminating them,
thus reducing huge amounts of system resources
consumption thus improving the execution speed.

Connection pooling increases efficiency, because scarcer
connections are created and unbolted. Furthermore,
connection pooling allows the application server to actually
handle more concurrent instantaneous client sessions than
the maximum number of open connections allowed by the
database at any instant. It leads to conservation of resources.

4. METHODOLOGY

The connection pool is a concept of hoarding the
connections. It is a technique of creating and handling a pool
of connections that are ready for use by any thread that
needs them. The connection pools initialize several
connections on startup. It obeys the datum that most
applications only require a thread to have access to a jdbc

connection when they are enthusiastically processing a
transaction, which typically takes milliseconds to complete.
When not processing a transaction, the connection would
otherwise sit idle. Instead, connection pool allows the idle
connection to be used by some other thread to do valuable
work. When the connection is lent out from the pool, it is
used exclusively by the thread that requested it. After its
completion, the connection is again reimbursed into the
connection pool.

Fig 2: Working of Proposed System

5. IMPLEMENTATION

The technology stack used for implementing the proposed
Database Connection Pooling are Java 7 and MySQL
database.

The attributes of proposed Database Connection Pool were
set as follows:

Table 1: Proposed System Attributes

ATTRIBUTE DESCRIPTION

Resource Name Name of database (E.g.
jdbc/database_name)

Auth Container

Driver classname com.mysql.jdbc.Driver

url Jdbc Connection url to the specified
database

Username &
password

Database username & password

Initial size The initial size of pool

maxActive Maximum number of allowed active
connections

maxIdle Maximum number of allowed idle
connection

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 05 | May -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 232

minIdle Minimum number of allowed idle
connections

maxWait Longest allowed waiting time

Validation query To check if connections are valid (E.g.
Select 1)

Validation interval The interval for validation (30000)

Methods of Proposed Database Connection Pool are
described as follows:
Table 2: Proposed System Methods

METHOD DESCRIPTION

createConnection() Creating a database connection

init() Initializing the database connection
pool and invoking it at server start
up

getConnection() Retrieving the database connection

freeConnection() Return the connection to the
database connection pool

6. EXPERIMENTAL RESULTS

A traditional database system was developed and tested
against the proposed database connection pooling system.
The experimentation was simulated for both the techniques
to compare their performances. The database access
requests varied from 1, 10, 100, …, 1000 and execution time
was recorded in milliseconds. The results thus obtained
were very substantial. It is depicted as below:

Chart 1: Number of Connections vs Execution Time

It can be observed that for an intricate application, recurrent
establishment and termination of connections will
significantly decrease the system’s performance. Hence, the
usage of the traditional database system was becoming a
bottleneck of systems’ throughput. Considering all these the

proposed system avoids excessive feasting of resources by
recycling the connections to the connection pools. Also, it
was observed that the conventional database produced loads
of garbage as the connections are destroyed each time,
leading to reduce in speed of machine execution speed. The
proposed connection pool emerges as the efficient
alternative for scenarios where the database requests are
large in number.

7. CONCLUSION

The proposed database connection pool is a feasible key for
intricate complications in database applications. It is best
suitable for applications that require concurrent database
accesses. It surpasses the traditional database systems with
traits of low efficiency and bulky occupancy to provide faster
execution and lesser garbage production. This paper offers a
novel management technique to enhance database
connections. Reusing of connections secures the execution
time by reducing the interaction with the database to create
and terminate connections. It achieves the target of
providing a better service while utilizing limited system
resources.

REFERENCES

[1] Zhang, T. F., Zhang, Y. J., & Yao, J. (2014). A study of

database connection pool. In Applied Mechanics and
Materials (Vol. 556, pp. 5267-5270). Trans Tech
Publications.

[2] GUIa, D., LIa, G., Zhanga, C., & Yina, P. A Method On
Connection Pool Service For Distributed Heterogeneous
Databases In Urban Geographic Informaiton Public
Platform.

[3] Reese, George. Database Programming with JDBC and
JAVA. " O'Reilly Media, Inc.", 2000.

[4] SUN, Y. F., & SONG, Z. S. (2004). Database Access
Technology Based on Connection-pool in JSP
[J]. Computer Applications, 6, 80-81.

[5] Othman, L. A., Hosny, H. M., & Aly, S. G. (2006,
September). Aspectizing Database Connection Pooling
for Improved Run-Time Performance Measures in Web
Applications. In Information Reuse and Integration, 2006
IEEE International Conference on (pp. 528-532). IEEE.

[6] Othman, L. A., Hosny, H. M., & Aly, S. G. (2011,
December). A comparative analysis of database
connection pooling implementations with emphasis on
the added value of aspect orientation. In Computer
Systems and Applications (AICCSA), 2011 9th IEEE/ACS
International Conference on (pp. 102-111). IEEE.

[7] Li, B. Z., Zheng-jun, J., Yi-jun, L., Ye, L., & Zhi-min, Y.
(2009, August). XML configuration-based self-adaptive
database connection pooling in NMVS. In Computer
Science and Information Technology, 2009. ICCSIT 2009.
2nd IEEE International Conference on (pp. 130-133).
IEEE.

[8] Hohenstein, U., & Jaeger, M. C. (2009). Database
Connection Monitoring for Component-based
Persistence Systems. International Journal on Advances
in Intelligent Systems Volume 2, Numbers 2&3, 2009.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 05 | May -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 233

[9] Liu, F. (2012, August). A Method of Design and
Optimization of Database Connection Pool. In Intelligent
Human-Machine Systems and Cybernetics (IHMSC), 2012
4th International Conference on (Vol. 2, pp. 272-274).
IEEE.

[10] Othman, L. A., Hosny, H. M., & Aly, S. G. (2011,
December). A comparative analysis of database
connection pooling implementations with emphasis on
the added value of aspect orientation. In Computer
Systems and Applications (AICCSA), 2011 9th IEEE/ACS
International Conference on (pp. 102-111). IEEE.

[11] Souza, F. N., Arteiro, R. D., Rosa, N. S., & Maciel, P. R.
(2008, December). Performance models for the instance
pooling mechanism of the JBoss application server.
In Performance, Computing and Communications
Conference, 2008. IPCCC 2008. IEEE International (pp.
135-143). IEEE.

[12] Yang, J., Zhang, Z., & Zhao, Y. (2010, August). Analysis on
database connection mechanism of web application
system in dreamweaver. In Internet Technology and
Applications, 2010 International Conference on (pp. 1-4).
IEEE.

[13] Luo, R., & Tang, X. (2004). Design and Realization for
JDBC-based Database Connection-pool [J]. Computer
Engineering, 9, 036.

[14] Singh, V., Sawant, U. V., Prateek, G. O. E. L., & Deshaveni,
N. G. (2014). U.S. Patent No. 8,874,609. Washington, DC:
U.S. Patent and Trademark Office.

[15] Xiufen, Z. G. F. (2011). A New Model of Database
Connection Pool [J]. Computer & Digital Engineering, 2,
043.

[16] HOU, C., YANG, Z., & LIU, W. (2006). Application and
improvement of database connection pool based on
J2EE architecture [J]. Computer Technology and
Development, 16(10), 8-10.

[17] Siyun, Q. (2005). Design for Web-based Supply Chain
Management System Database Connection-
pool. Industrial Control Computer, 12, 027.

[18] Liu, F. (2012, August). A Method of Design and
Optimization of Database Connection Pool. In Intelligent
Human-Machine Systems and Cybernetics (IHMSC), 2012
4th International Conference on (Vol. 2, pp. 272-274).
IEEE.

