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ABSTRACT- This will presents an efficient Very Large Scale Integration (VLSI) design for Convolutive Blind Source 

Separation (CBSS). Information maximization (Infomax) approach is adopted for CBSS network. CBSS chip design 

mainly includes Infomax filtering modules and scaling factor computation modules. In an Infomax filtering module, 

filtering of input samples are done by Infomax filter with the weights updated by Infomax driven stochastic learning 

rules. And for scaling factor computation module all operations are implemented by the circuit design based on a 

piecewise-linear approximation scheme. An efficient and high performance and less delayed blind source separation 

technique is described .     
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1. INTRODUCTION 

Blind source separation is a kind of a filtering process used to separate different  sources from the mixed signals in 

which most of the information about sources and mixed signals is not known. This restriction makes the blind 

source separation a challenging task. Blind source separation becomes a very important research topics in a lot of 

fields such as audio signal processing, biomedical signal processing, communication systems and image processing. 

Simple version of mixing process is one in which without filtering effect instantaneous mixing occurs. Convolutive 

mixing process should be done for the audio source passing through a filtering environment before arriving at the 

microphones and in order to recover the original audio source convoluted blind source separation should be done. 

One of the conventional methods is Independent component analysis (ICA) which is used to solve the CBSS 

problem. Major drawback of software implementation using this technique is often highly computational intensive 

and more time consuming process. Providing hardware solutions for ICA-based blind source separation has drawn 

considerable attention because of the hardware solution achieves optimal parallelism. An analog BSS chip can be 

designed using above-and–sub threshold CMOS circuit techniques which integrates an  i/o interface of analog, 

weight coefficients and adoption blocks. 

2. PROPOSED VLSI BLIND SOURCE SEPARATOR 

 The proposed CBSS system is shown in the FIG.2. The CBSS chip mainly consists of two functional cores: 

Infomax filtering module and scaling factor computation module. Additionally, the Infomax filtering outputs are 

added with the help of two small carry-save adders (CSAs). The current prototype chip is used for two sources and 

two sensors by utilizing four Infomax filtering modules along with two scaling factor computation modules. 
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FIG.2 : The block diagram of a proposed CBSS system. 

 

3. INFOMAX FILTERING MODULE 

  The Infomax filtering module for the proposed system is shown in fig.3. In the fig. 1, the CBSS separation 

network contains four causal FIR filters. These filters are adaptive because stochastic learning rules which are 

derived from the Infomax approach will alter the tap coefficients and are thus referred to herein as the Infomax 

adaptive filter or the Infomax filter. The Infomax filtering module is exemplified with six taps. In the Infomax 

filtering module, an input sample passes through lower and upper register chains. These samples are multiplied 

with filter weights and scaling factors, respectively. The multiplication results of all of the taps are accumulated by 

a two-stage summation. The first stage adopts carry lookahead adders to generate the intermediate addition 

results for multiplication of every two successive taps. The above intermediate addition results are summed up by 

using a carry save addition scheme. A CSA(carry save adder) can accept more than two data inputs.  

FIG.3:  Infomax filtering module. 
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4. SCALING FACTOR COMPUTATION MODULE 

 

 

 

 

 

 

 

 

 

 

FIG.4 : SCALING FACTOR COMPUTATION MODULE 

 Fig.4 describes the proposed circuit for the scaling factor computation module. The linear equation evaluation 

with input ui(t) and ai and bi are equation parameters and are implemented using a multiplier and an adder. In 

order to choose corresponding ai and bi, a line segment has to be selected by two multipliers. The scaling factor is 

calculated by using the formula s(t) = 1 − 2y(t), where y(t) = (1+e-u(t))-1. If y(t) is known, −2y(t) can be generated 

first using 2’s complement and a left shift to y(t). The scaling factor s(t) is then obtained by adding −2y(t) and one. 

The above procedure is simple. The scaling factor commutation is approximated directly rather than performing 

logistic sigmoid computation first and then calculating 1 − 2y(t). The target function to be approximated by linear 

piecewise scheme is 

S(t) = 1-2/(1 + e ui(t) ) 

Where, s(t) = scaling factor.  

 

. FIG.5 : Five line segment approximation to the scaling factor computation. 
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According to our numerical analysis, five line segments are sufficient to approximate with a negligible error. Let lsi, 

i = 1, 2, . . , 5 denote the ith line segment, and ci represent the connected point between two consecutive line 

segments. 

 

To implement the line-segment approximation, the circuit design for scaling factor computation is to calculate 

single variable linear equations. For the equation of lsi which corresponding to mi(n) = ai n + bi, i = 1, 2, . . . , 5, where 

n = ui(t). As the slopes of ls1 and ls5 are the same, these two line segments share the equation parameters a1. In the 

same manner, line segments ls2 and ls4 share the equation parameters a2. Furthermore, according to the 

symmetry in Fig. 5, the bias used for line segment ls5, e.g., −b1, is the negative of the bias b1 used for line segment 

ls1. In addition, line segments ls4 and ls2 use biases −b2 and b2, respectively .As for the d0
ij(t) , this study designs a D-

term unit to execute dij(t) = cofactor(wij)(detW0)-1. The architecture of the D-term unit is shown in Fig. 6. The D-

term unit consists of a determinant circuit to find  

 

                   

               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 FIG.6: Architecture of a D-term unit. 

 

Or to obtain the detW0 and in order to generate the inverse of detW0, lookup table is used. Since W is a 2 × 2 

matrix, the cofactors(wij ) are w22, −w21, −w12, and w11, which are multiplied by (detW0)-1 in parallel using four 

multipliers. 
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5. SIMULATION WAVEFORM 
 

 
 

6. CONCLUSION 

 

An efficient VLSI architecture design for CBSS with less delay has been presented in this paper. The architecture 

mainly consists of Infomax filtering modules and scaling factor computation modules and a D-term. CBSS 

separation network derived from the Infomax approach. The proposed system has high performance and has less 

delay as compared with  the other existing system. By the usage of vedic multiplier in Infomax filter increases the 

speed as well as performance of the proposed system.   
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