
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 05 | May -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1482

Efficient Frequent Itemset Mining On Bigdata Using FIU-tree

Hanumanthu T C1, Arun Kumar2

1Student, Dept. of CSE, MVJCE, Bangalore, Karnataka, India

2Assistant professor, Dept. of CSE, MVJCE, Bangalore, Karnataka, India

---***--
Abstract—Existing parallel mining algorithms for frequent
itemsets lack a mechanism that enables automatic
parallelization, load balancing, data distribution, and fault
tolerance on large clusters. As a solution to this problem, we
design a parallel frequent itemsets mining algorithm called
FiDoop using the MapReduce programming model. To achieve
compressed storage and avoid building conditional pattern
bases, FiDoop incorporates the frequent items ultrametric tree,
rather than conventional FP trees. In FiDoop, three MapReduce
jobs are implemented to complete the mining task. In the
crucial third MapReduce job, the mappers independently
decompose itemsets, the reducers perform combination
operations by constructing small ultrametric trees, and the
actual mining of these trees separately. We implement FiDoop
on our in-house Hadoop cluster. We show that FiDoop on the
cluster is sensitive to data distribution and dimensions, because
itemsets with different lengths have different decomposition
and construction costs. To improve FiDoop’s performance, we
develop a workload balance metric to measure load balance
across the cluster’s computing nodes. We develop FiDoop-HD,
an extension of FiDoop, to speed up the mining performance
for high-dimensional data analysis. Extensive experiments
using real-world celestial spectral data demonstrate that our
proposed solution is efficient and scalable.

Keywords—Frequent itemsets, frequent items

ultrametric tree (FIU-tree), Hadoop cluster, load balance,

MapReduce.

I. introduction

 Parallel Frequent Itemset mining is looking for sequence

of actions and load balancing of dataset. Creating Hadoop

cluster is especially for storage and analyzing data. Through

frequent Itemset mining extracting knowledge from data.

Example of this technique is Market Basket Algorithm. It also

affect on load balancing. It helps to increase the speed of

performance. This parallel Frequent Itemset mining is done

using map reduce programming model. Partitioning of data

in dataset through algorithm making data more efficient. This

data partitioning is carried out on Hadoop clusters. Data

partitioning necessary for scalability and high efficiency in

cluster. In Frequent Itemsets Mining data partition affects to

computing nodes and the traffic in network. Data partition

may be spread over multiple nodes, and users at the node can

perform local transactions on the partition. This increases

performance for sites that have regular transactions

involving certain views of data, whilst maintaining

availability and security. By using Fidoop-DP concept,

performance of parallel Frequent Itemset Mining on Hadoop

clusters increases. Fidoop-DP is voronoi diagram. It is

conceptualized on data partition strategy.

II. literature survey

Distinctive techniques have been put for slim the writing

review to address the issue, when datasets in current

information mining applications turn out to be too much vast,

consecutive FIM calculations running on a solitary machine

experience the ill effects of execution disintegration. The

going with fragment shows a segment of the techniques used

for this reason. All the more vitally, the current parallel

algorithms do not have an instrument that empowers

programmed parallelization, load adjusting, information

dispersion, and adaptation to non-critical failure on huge

figuring bunches.

[1] This Paper proposes how frequent itemset mining finds

much of the time happening itemsets in value-based

information. This is connected to assorted issues, for

example, decision backing, specific promoting, money related

gauge and medicinal analysis. The cloud, calculation as a

utility administration, permits us to crunch expansive mining

issues. There are various calculations for doing visit itemset

mining, yet none are out-of-the-crate suited for the cloud,

requiring vast information structures to be synchronized

over the system. The greatest calculations meant for liability

visit itemset mining are the famous FP-development

(Frequent Patterns development).

[2] This paper proposes MapReduce is a programming model

for handling and producing extensive information sets.

We fabricated a framework around this programming model

in 2003 to disentangle development of the upset list for

taking care of hunts at Google.com. From that point forward,

more than 10,000 particular projects have been actualized

utilizing MapReduce at Google, including calculations for

extensive scale diagram handling, content preparing,

machine learning, and factual machine interpretation. The

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 05 | May -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1483

Hadoop open source execution of MapReduce has been

utilized widely outside of Google by various associations.

[3] This paper proposes Efficient get ready of neighbor joins

using MapReduce k nearest k closest neighbor jo.in (kNN

join), intended to discover k closest neighbors from a dataset

S for each item in another dataset R, is a primitive operation

generally received by numerous information mining

applications. To some things up, the mappers bunch objects

into gatherings; the reducers perform the kNN join on every

gathering of items independently.

We outline a viable mapping instrument that endeavors

pruning rules for separation sifting, and thus diminishes both

the rearranging and computational expenses. To decrease the

rearranging cost, we propose two rough calculations to

minimize the quantity of re productions. Broad investigations

on our in-house group exhibit that our proposed strategies

are proficient, strong and adaptable.

[4] This paper proposes the interrelation examination of

grand spectra data using constrained consistent pattern trees

Association principle mining, in which creating continuous

examples is a key stride, is a successful method for

recognizing inalienable and obscure interrelationships

between qualities of divine spectra information and its

physicochemical properties. In this study, we first make

utilization of the main request predicate rationale to speak to

learning got from heavenly spectra information. Next, we

propose an idea of obliged regular example trees (CFP)

alongside a calculation used to develop CFPs, planning to

enhance the productivity and relevance of affiliation tenet

mining.

[5] This paper proposes a heap adjusted appropriated

parallel mining algorithms. Because of the exponential

development in overall data, organizations need to manage a

regularly developing measure of computerized data. A

standout amongst the most imperative difficulties for

information mining is rapidly and effectively finding the

relationship among information. The Apriori calculation has

been the most prevalent procedure in finding incessant

examples. Be that as it may, while applying this strategy, a

database must be checked commonly to ascertain the tallies

of an immense number of applicant itemsets. Parallel and

appropriated registering is a successful technique for

quickening the mining procedure.

[6] This paper proposes DH-TRIE incessant example mining

on Hadoop utilizing JPA. The FP-growth is an understood

relentless case's estimation in data mining when working

with high-dimensional, vast scale information sets. It is

otherwise called awesome multifaceted nature on memory

for the recursively preparing. When all is said in done, FP

growth can't deal with substantial scale information set

unless isolating an entire information set into little squares.

Taking into account Hadoop, the open distributed computing

show, a disseminated DH-TRIE regular example calculation

utilizing JPA is proposed, which tackled the three issues

(globalization, arbitrary compose and length). The

calculation is indicated great adaptability and versatility by

correlations with mahout venture. By connected to a

virtualization stage Vega Cloud, the calculation will be

utilized as a part of far-extending circumstances.

III. SYSTEM DESIGN

A meaningful representation of the system to be developed

in any research work is known as design. The interaction

among the modules requires high I/O and multiple threads.

The main consideration is to make the model and the system

more compatible so that both the entity proves to be

efficient. The process by which this task is carried out

combines the benchmark result based o case studies which

are a set of input to this research.

Fidoop architectural overview is been focused and

demonstrated in the following section; figure 1. projects the

architected diagram. The system architecture consists of a

upload process, preprocessing job, generation of frequent

itemsets using FP-growth and FIUT technique for

development of system protocol design and analysis. This

system is featured to collect the data from the independent

sources under a privileged authenticated status. The graph

generated shows the time taken by the two algorithms to do

the frequent itemset process based on the support value and

number of records.

The graph projects the overall status on developing

and designing the system requirement as per the resource

availability. In our proposed system we have discussed about

online retail. Each time a stipulated system is generated and

thus its acquired results are analyzed and added.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 05 | May -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1484

Figure 1: Architecture of Proposed System

A. FIUT:

The FIUT approach adopts the FIU-tree to enhance the

efficiency of mining frequent itemsets. FIU-tree is a tree

structure constructed as follows.

1) After the root is labeled as null, an itemset p1, p2, . . . ,

pm of frequent items is inserted as a path connected by edges

(p1, p2), (p2, p3), . . . , (pm−1, pm) without repeating nodes,

beginning with child p1 of the root and ending with leaf pm

in the tree.

2) An FIU-tree is constructed by inserting all itemsets as

its paths, each itemset contains the same number of frequent

items. Thus, all of the FIU-tree leaves are identical height.

3) Each leaf in the FIU-tree is composed of two fields:

named item-name and count. The count of an item-name is

the number of transactions containing the itemset that is the

sequence in a path ending with the item name. Non leaf

nodes in the FIU-tree contains two fields: named item-name

and node-link. A node-link is a pointer linking to child nodes

in the FIU-tree.

The FIUT algorithm consists of two key phases. The first

phase involves two rounds of scanning a database. The first

scan generates frequent one-itemsets by computing the

support of all items, whereas the second scan results in k-

itemsets by pruning all infrequent items in each transaction

record. Note that, k denotes the number of frequent items in

a transaction. In phase two, a k-FIU-tree is repeatedly

constructed by decomposing each h-itemset into k-itemsets,

where k + 1 ≤ h ≤ M (M is the maximal value of k), and

unioning original k-itemsets. Then, phase two starts mining

all frequent k-itemsets based on the leaves of k-FIU-tree

without recursively traversing the tree. Compared with the

FP-growth method, FIUT significantly reduces the computing

time and storage space by averting overhead of recursively

searching and traversing conditional FP trees..

B. MapReduce Framework:

MapReduce is a promising parallel and scalable

programming model for data-intensive applications and

scientific analysis. A MapReduce program expresses a large

distributed computation as a sequence of parallel operations

on datasets of key/value pairs. A MapReduce computation

has two phases, namely, the Map and Reduce phases. The

Map phase splits the input data into a large number of

fragments, which are evenly distributed to Map tasks across

the nodes of a cluster to process. Each Map task takes in a

key-value pair and then generates a set of intermediate key-

value pairs. After the MapReduce runtime system groups and

sorts all the intermediate values associated with the same

intermediate key, the runtime system delivers the

intermediate values to Reduce tasks. Each Reduce task takes

in all intermediate pairs associated with a particular key and

emits a final set of keyvalue pairs. Both input pairs of Map

and the output pairs of Reduce are managed by an

underlying distributed file system. MapReduce greatly

improves programmability by offering automatic data

management, highly scalable, and transparent fault-tolerant

processing. Also, MapReduce is running on clusters of cheap

commodity servers—an increasingly attractive alternative to

expensive computing platforms. Thanks to the

aforementioned advantages, MapReduce has been widely

adopted by companies like Google, Yahoo, Microsoft, and

Facebook.

Hadoop—one of the most popular MapReduce

implementations—is running on clusters where Hadoop

distributed file system (HDFS) stores data to provide high

aggregate I/O bandwidth. At the heart of HDFS is a single

Name Node—a master server that manages the file system

namespace and regulates access to files. The Hadoop runtime

system establishes two processes called Job Tracker and

Task Tracker. Job Tracker is responsible for assigning and

scheduling tasks; each Task Tracker handles Map or Reduce

C. Background Subtraction:

The idea of background subtraction method is to initialize

a background firstly, and then the current frame is

subtracted with reference frame to detect moving object.

This method is simple and easy to realize, and accurately

extracts the characteristics of target data .The output image

is the binary image. Morphological filtering is applied to that

image and it will perform the operation like opening, closing,

sharpening the edges and it will also remove the noise from

that frame. The function of the morphological filtering is the

removal of small regions created by noise; fill up unnecessary

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 05 | May -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1485

gaps, smoothing boundaries, extracting edges. It will give

pixel level operations.

IV. implementation Details

Now, we discuss the implementation details of FiDoop. We

pay particular attention to the last MapReduce job in FiDoop,

because the last job is computationally expensive. We show

how to optimize the performance of the third MapReduce job.

A. Load Balance:

The decompose() function of the third MapReduce job

accomplishes the decomposition process. If the length of an

itemset is m, the time complexity of decomposing the itemset

is O(2m). Thus, the decomposition cost is exponentially

proportional to the itemset’s length. In other words, when

the itemset length is going up, the decomposition overhead

will dramatically enlarged. The data skewness problem is

mainly induced by the decomposition operation, which in

turn has a significant performance impact on FiDoop. The

first step toward balancing load among data nodes of a

Hadoop cluster is to quantitatively measure the total

computing load of processing local itemsets. We achieve this

first step by developing a workload-balance metric to

quantify load balance among the data nodes.

B. High-Dimensional Optimization:

The aforementioned analysis confirms that if the length of

itemsets to be decomposed is large, the decomposition cost

will exponentially increase. In this section, we conduct

experiments to investigate the impact of dimensionality on

FiDoop. We also compare FiDoop with a popular solution

parallelization of FP-growth (Pfp) . Section VI presents an

optimization algorithm called FiDoop-HD for high-

dimensional data processing.

When it comes to mining frequent itemsets, varying

dimensionality leads to a wide range of itemset lengths. Our

algorithm needs to decompose each itemset generated by

pruning infrequent items for each transaction. We made use

of the series of D1000W, which are described in detail in

Section VII (see Synthetic Dataset). In the group of

experiments, the number of transactions is 10 000 and the

average transaction size is anywhere between 10 and 50.

V. Performance Analysis

The efficiency of the system can be analyzed in terms

of time taken by the FP-Tree and FIU-Tree algorithms in

generating the Frequent Itemsets. We compare the

performance of the system with the Fidoop system.

In Table 5.1 shows the time taken to create the

Frequent Itemsets of different transactions size. From the

Table, it is clear that the amount of time taken to generate

frequent itemsetsby FP-Tree algorithm is around 1.5 times

slower than the FIU-Treefor the same input.

Table 5.1 Performance analysis with varied

Record size

Minimum support plays an important role in mining frequent

itemsets. We increase minimum support thresholds from

0.0001% to 0.0003% with an increment of 0.00005%. Figure

5.2 shows evaluating the impact of minimum support on Pfp

and our proposed algorithms containing three MapReduce

jobs using both celestial spectral and synthetic datasets.

Fig. 5.2: Frequent Itemset Generation Time

Fig. 5.3 shows the impact of workload balance metric on

running time measured in the unit of 1000 s.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 05 | May -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1486

Fig.5.3 Frequent Itemsets vs Support Level

VI. Conclusion

The current frequent itemset mining algorithm is

facing big challenges in load balancing, efficiency and

scalability, to overcome these challenges our proposed

system uses MapReduce techniques and Hadoop. Our

proposed algorithm performs three MapReduce jobs to get

Frequent Itemsets. The data is collected from UCI datasets

which are preprocessed and uploaded into Hadoop .When

frequent itemsets mining algorithm is invoked, the datasets

are fetched from Hadoop and mining algorithms are

processed on data and produced frequent itemsets. Fidoop

system has been dedicated to produce an accurate data

mining results under Hadoop single node cluster

environment,

The system achieves high efficiency gain for

providing static information resources for dynamic and

critical data under big data mining. Results are detailed and

discussed in previous chapters with overall system design

and analysis. This System is developed as a web based

application in MVC architecture on Java platform. For

comparison FP-Tree and FIU-Tree techniques are used.

The present dataset used belongs to online retail, in

future we can use different datasets from different verticals,

also we can develop mobile app to get results in our hand.

This system in future can be enhanced with a diplomatic

sentiment analysis and redefine process of computation

under big data environment.

References

[1] Rizwana Kowsar M.S and Somesekhar T “Data Heirarchy

Mining under MapReduce Techniques for Frequent Itemsets”

Proceedings of International Conference on Computers,

Communications, Control and Applied Science ThinkIT-

2016,All copyrights @ IRD Journals 2016 vol. 10, pp.148-153.

[2] Rizwana Kowsar M.S and Somesekhar T “Dataset based

MapReduce technique under Chronic Mining and Confidence

analysis” 1st International Conference on Internet of Things

(ICIOT -2016) conducted by the Department of Computer

Science and Engineering APS College of Engineering.

[3] W. Lu, Y. Shen, S. Chen, and B. C. Ooi, “Efficient processing

of k nearest neighbor joins using MapReduce,” Proc. VLDB

Endow., vol. 5, no. 10, pp. 1016–1027, 2012.

[4] J. Zhang, X. Zhao, S. Zhang, S. Yin, and X. Qin, “Interrelation

anal- ysis of celestial spectra data using constrained frequent

pattern trees,” Knowl.-Based Syst., vol. 41, pp. 77–88, Mar.

2013.

[5] K. Yu and J. Zhou, “Parallel TID-based frequent pattern

mining algo- rithm on a PC cluster and grid computing

system,” Expert Syst. Appl., vol. 37, no. 3, pp. 2486–2494,

2010.

[6] “Distributed Algorithm for Frequent Pattern Mining using

HadoopMap Reduce Framework”

Suhasini A. Itkar1, Uday V. Kulkarni2 1 PES Modern college of

Engineering, Pune, India.DOI: 02.AETACS.2013.4.123 ©

Association of Computer Electronics and Electrical Engineers,

2013.

[7] K.-M. Yu, J. Zhou, T.-P.Hong, and J.-L. Zhou, “A load-

balanced dis- tributed parallel mining algorithm,” Expert

Syst. Appl., vol. 37, no. 3, pp. 2459–2464, 2010.

[8] K. W. Lin, P.-L. Chen, and W.-L. Chang, “A novel frequent

pattern mining algorithm for very large databases in cloud

computing environ- ments,” in Proc. IEEE Int. Conf. Granular

Comput. (GrC), Kaohsiung, Taiwan, 2011, pp. 399–403.

[9] L. Yang, Z. Shi, L. D. Xu, F. Liang, and I. Kirsh, “DH-TRIE

frequent pattern mining on Hadoop using JPA,” in Proc. IEEE

Int. Conf. Granular Comput. (GrC), Kaohsiung, Taiwan, 2011,

pp. 875–878.

[10] “Mining Distributed Frequent Itemset with Hadoop” Ms.

Poonam Modgi, PG student, Parul Institute of Technology,

GTU. Prof. Dinesh Vaghela, Parul Institute of Technology,

GTU.Poonam Modgi et al, / (IJCSIT) International Journal of

Computer Science and Information Technologies, Vol. 5 (3),

2014, pg. 3093 – 3097.

