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Abstract: The topic is the study of the Tur´an number 
for C4. Fu¨redi showed that C4-free graphs with ex(n,C4) 
edges are intimately related to polarity graphs of 
projective planes. Then prove a general theorem about 
dense subgraphs in a wide class of polarity graphs, and as 
a result give the best-known lower bounds for ex(n,C4) for 
many values of n.and  also study the chromatic and 
independence numbers of polarity graphs, with special 
emphasis on the graph ERq. Next study is Sidon sets on 
graphs by considering what sets of integers may look like 
when certain pairs of them are restricted from having the 
same product. Other generalizations of Sidon sets are 
considered as well. Then use C4-free graphs to prove 
theorems related to solvability of equations. Given an 
algebraic structure R and a subset A ⊂ R, define the sum 
set and product set of A to be A+A = {a+b : a,b ⊂ A} and A·A 
= {a·b : a,b ⊂ A} respectively. Showing under what 
conditions at least one of |A + A| or |A · A| is large has a 
long history of study that continues to the present day. 
Using spectral properties of the bipartite incidence graph 
of a projective plane, we deduce that nontrivial sum-
product estimates hold in the setting where R is a finite 
quasifield. Several related results are obtained. 
 
Keywords: Tur´an, C4-free graphs, chromatic, Sidon 
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I. INTRODUCTION 

 
Let us know clearly about Additive Combinations, Finite 
incidence Geometry & Graph Theory in detail. Additive 
combinatoricsis a compelling and fast growing area of 
research in mathematical sciences, and the goal of this 
paper is to survey some of the recent developments and 
notable accomplishments of the field, focusing on both 
pure results and applications with a view towards 
computer science and cryptography. One might say that 
additive combinatorics studies combinatorial properties 
of algebraic objects, for example, Abelian groups, rings, 
or fields, and in fact, focuses on the interplay between 
combinatorics, number theory, harmonic analysis, 
ergodic theory, and some other branches. Green 
describes additive combinatorics as the following: 
“additive combinatorics is the study of approximate 
mathematical structures such as approximate groups, 
rings, fields, polynomials and 
homomorphisms”.Approximate groups can be viewed as 

finite subsets of a group with the property that they are 
almost closed under multiplication. Approximate groups 
and their applications (for example, to expand er graphs, 
group theory, Probability, model theory, and so on) form 
a very active and promising area of research in additive 
combinatorics. this paper describes additive 
combinatorics as the following: “additive combinatorics 
focuses on three classes of theorems: decomposition 
theorems, approximate structural theorems, and 
transference principles ”.Techniques and approaches 
applied in additive combinatorics are often extremely 
sophisticated, and may have roots in several unexpected 
fields of mathematical sciences, Additive combinatorics 
has recently found a great deal of remarkable 
applications to computer science and cryptography. 
Methods from additive combinatorics provide strong 
techniques for studying the so-called 
threshold phenomena, which is itself of significant 
importance in combinatorics, computer science, discrete 
probability, statistical physics, and economics. Additive 
combinatorics has seen very fast advancements in the 
wake of extremely deep work on  zemer  edi s theorem  
the proof of the existence of long APs in the primes by 
Greenand Tao, and generalizations and applications of 
the sum-product problem, and continues to see 
significant progress . 

A finite geometry is any geometric system that has only a 
finite number of points. The familiar Euclidean geometry 
is not finite, because a Euclidean line contains infinitely 
many points. A geometry based on the graphics 
displayed on a computer screen, where the pixels are 
considered to be the points, would be a finite geometry. 
While there are many systems that could be called finite 
geometries, attention is mostly paid to the finite 
projective and affine spaces because of their regularity 
and simplicity. Other significant types of finite geometry 
are finite Möbius or inversive planes and Laguerre 
planes, which are examples of a general type called Benz 
planes, and their higher-dimensional analogs such as 
higher finite geometries. Finite geometries may be 
constructed via linear algebra, starting from vector 
spaces over a finite field; the affine and projective planes 
so constructed are called Galois geometries. Finite 
geometries can also be defined purely axiomatically. 
Most common finite geometries are Galois geometries, 
since any finite projective space of dimension three or 
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greater is isomorphic to a projective space over a finite 
field (that is, the projectivization of a vector space over a 
finite field). However, dimension two has affine and 
projective planes that are not isomorphic to Galois 
geometries, namely the non-Desarguesian planes. 
Similar results hold for other kinds of finite geometries. 

 

Fig 1.Finite affine plane of order 2, containing 4 points 
and 6 lines. Lines of the same color are "parallel". 

I.1Classification of finite projective spaces by 
geometric dimension 

i))Dimension 0 (no lines): The space is a single point and 
is so degenerate that it is usually ignored. 

ii)Dimension 1 (exactly one line): All points lie on the 
unique line, called a projective line. 

iii) Dimension 2: There are at least 2 lines, and any two 
lines meet. A projective space for n = 2 is a projective 
plane. These are much harder to classify, as not all of 
them are isomorphic with a PG(d, q). The Desarguesian 
planes (those that are isomorphic with a PG(2, q)) satisfy 
Desargues's theorem and are projective planes over 
finite fields, but there are many non-Desarguesian 
planes. 

iv)Dimension at least 3: Two non-intersecting lines exist. 
The Veblen–Young theorem states in the finite case that 
every projective space of geometric dimension n ≥ 3 is 
isomorphic with a PG(n, q), the n-dimensional projective 
space over some finite field GF(q). 

v)In mathematics, incidence geometry is the study of 
incidence structures. A geometric structure such as the 
Euclidean plane is a complicated object that involves 
concepts such as length, angles, continuity, betweenness, 
and incidence. An incidence structure is what is obtained 
when all other concepts are removed and all that 
remains is the data about which points lie on which lines. 
Even with this severe limitation, theorems can be proved 
and interesting facts emerge concerning this structure. 
Such fundamental results remain valid when additional 
concepts are added to form a richer geometry. It 

sometimes happens that authors blur the distinction 
between a study and the objects of that study, so it is not 
surprising to find that some authors refer to incidence 
structures as incidence geometries.[1] 

vi)Incidence structures arise naturally and have been 
studied in various areas of mathematics. Consequently 
there are different terminologies to describe these 
objects. In graph theory they are called hypergraphs, and 
in combinatorial design theory they are called block 
designs. Besides the difference in terminology, each area 
approaches the subject differently and is interested in 
questions about these objects relevant to that discipline. 
Using geometric language, as is done in incidence 
geometry, shapes the topics and examples that are 
normally presented. It is, however, possible to translate 
the results from one discipline into the terminology of 
another, but this often leads to awkward and convoluted 
statements that do not appear to be natural outgrowths 
of the topics. In the examples selected for this article we 
use only those with a natural geometric flavour. 

vi)A special case that has generated much interest deals 
with finite sets of points in the Euclidean plane and what 
can be said about the number and types of (straight) 
lines they determine. Some results of this situation can 
extend to more general settings since only incidence 
properties are considered. 

vii)In mathematics graph theory is the study of graphs, 
which are mathematical structures used to model pair 
wise relations between objects. A graph in this context is 
made up of vertices, nodes, or points which are connected 
by edges, arcs, or lines. A graph may be undirected, 
meaning that there is no distinction between the two 
vertices associated with each edge, or its edges may be 
directed from one vertex to another; see Graph (discrete 
mathematics) for more detailed definitions and for other 
variations in the types of graph that are commonly 
considered. Graphs are one of the prime objects of study 
in discrete mathematics. 

viii)Refer to the glossary of graph theory for basic 
definitions in graph theory. 

 

Fig 2 A drawing of Graph. 
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2 THEORMS STUDY 

Theorem.1 If q is a prime power, then ex(q2 −q−2 C4) ≥ 1 
2q3 −q2 +q−Oq1/2. From here  we study properties of 
polarity graphs without Tura´n numbers in mind. One 
polarity graph of particular interest is the graph ERq. If q 
is a prime power, the vertices of ERq are the one-
dimensional subspaces of a three dimensional vector 
space over Fq, and two distinct subspaces are adjacent if 
they are orthogonal to each other. The graph ERq has 
been studied in a variety of settings,, we study the 
chromatic number of ERq. In particular, we prove the 
following theorem, which is best possible up to the 
constant 2. 

Theorem 2. Let Π be a projective plane of order q that 
contains an oval and has a polarity π. If m ∈ {1 2 ... q + 1}  
then the polarity graph Gπ contains a sub graph on at 
most m +m/2 vertices that has at least 2(m/ 2)+ (m4 
/8q) –O((m4 /q3/2) + m) edges. 

Theorem 3. (Hoffman [50]). Let G be a d-regular graph 
on n vertices and λn be the smallest eigenvalue of its 
adjacency matrix. Then α(G) ≤ n( −λn / d−λn) . As the 
graph ERq with loops on the absolute points is regular, 
Hoffman s theorem may be applied to obtain α(ERq) ≤ 
q3/2 + q1/2 + 1. Therefore, the order of magnitude of 
α(ERq) is q3/2. Godsil and Newman refined the upper 
bound obtained from Hoffman s bound. Their result was 
then improved using the Lova´sz theta function. When q 
is even, Hobart and Williford  used coherent 
configurations to provide upper bounds for the 
independence number of general orthogonal polarity 
graphs. When q is an even square, the known upper 
bound and lower bound for α(ERq) differ by at most 1. In 
the case when p is odd or when p = 2 and n is odd, it is 
still an open problem to determine an asymptotic 
formula for α(ERq). 

Since the independence number has been well-studied 
and its order of magnitude is known, it is natural to 
investigate the chromatic number of ERq which is closely 
related to α(ERq). Let q be any prime power. Then ERq 
has q2 + q + 1 vertices and α(ERq) = Θ(q3/2)  and so a 
lower bound for χ(ERq) is q2+q+1 α(ERq) ≥ q1/2. One 
may ask whether this lower bound actually gives the 
right order of magnitude of χ (ERq). We confirm this for 
q being an even power of an odd prime. 

Theorem 4.. If q is a power of an odd prime and f(X) 
∈Fq2[X] is a planar polynomial all of whose coefficients 
belong to the subfield Fq  then α (Gf) ≥q2(q−1) Even 
though we have the restriction that the coefficients of f 
belong to Fq, many of the known examples of planar 
functions have this property. Most discussed including 
those that give rise to the famous Coulter-Matthews 
plane, satisfy our requirement. It is still an open problem 
to determine an asymptotic formula for the 

independence number of ERp for odd prime p. However, 
Theorem 4. it would be quite surprising to find an 
orthogonal polarity graph of a projective plane of order q 
whose independence number is o(q3/2). We believe that 
the lower bound Ω(q3/2) is a property shared by all 
polarity graphs, including polarity graphs that come 
from polarities which are not orthogonal. 

Theorem 5. There exist constants a,b > 0 such that (i) 
P(n d) ∼ n if d ≤ n1/2(log n)−a and (ii) P(n d) ∼ n log n  if 
d ≥ n1/2(log n)b. An old result of Erdo˝s implies P(Kn) ∼ 
n log n, whereas Theorem 5.shows that P(G) ∼ n log n for 
graphs which are much sparser than Kn. The labeling of 
the vertices of any n-vertex graph G with the first n 
prime numbers is always a product-injective labeling 
from [N] where N ∼ nlog n, via the Prime Number 
Theorem. Theorem 5. then is an analogous result for 
products that Bolloba´s and Pikhurko  proved for sums 
and differences  where a change in behavior was also 
observed around d = n1/2. Theorem 5. will be proved 
with a > log2 and b > 5.5; while our method allows these 
values to be slightly improved, new ideas would be 
needed to determine P(n,d) for all the intermediate 
values of d. In fact, the proof of Theorem 5.(ii) 
establishes the much stronger result that if G is the 
random graph on n vertices with edge-probability d/n 
and d ≥ n1/2(logn)b  then P(G) ∼ nlogn almost surely as 
n →∞. We also remark that Theorem 5. determines the 
maximum value of P(G) over n-vertex graphs with m 
edges for almost all possible values of m. It is a natural 
question to ask about other functions besides sums and 
products. Let H be a k-uniform hypergraph and denote 
by Kk n the complete k-uniform hypergraph on n 
vertices. If φ is a general symmetric function of k 
variables  then  φ(H) is the minimum integer N such that 
there exists an injection c :V (H) → [N] such that 
whenever {v1 v2 ... vk} {w1 w2 ... wk} ∈ E(H) are distinct 
hyperedges  φ(c(v1) c(v2) ... c(vk)) 6= 
φ(c(w1) c(w2) ... c(wk)). The question of determining 
 (G) and P(G) then is the case when k = 2 and φ(x y) = x 
+ y or φ(x y) = x·y respectively. For general H and φ  this 
quantity depends on number theoretic questions 
involving the number of representations of integers as 
evaluations of φ. For instance  if k = 2 and φ(x y) = (xy)2 
+ x + y and φ(x y) = φ(u v)  then it is not hard to show 
{x y} = {u v} and therefore  φ(G) = n for every n-vertex 
graph G. Define Rφ(N) = X x y∈[N]k x6=y 1φ(x)=φ(y). 
This is the number of ways of writing integers in two 
ways as evaluations of φ on [N]k. We prove the following 
general theorem: 

Theorem 6.  Let q be a power of an odd prime. If A ⊂Fq  
|A+A| = m and |A·A| = n,  

then |A|2 ≤ mn |A| /q + q1/2 √mn. 
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Theorem 7. Let Π be a finite projective plane of even 
order which admits an orthogonal polarity. Then Π 
contains a Fano sub plane. 

Ganley showed that a finite semifield plane admits an 
orthogonal polarity if and only if it can be coordinatized 
by a commutative semifield. A result of Kantor implies 
that the number of no isomorphic planes of order n a 
power of 2 that can be coordinatized by a commutative 
semifield is not bounded above by any polynomial in n. 
Thus, Theorem 7. Applies to many projective planes 

3 CONCLUSION 

First, we note that the proof of Theorem (Let Π be a finite 
projective plane of even order which admits an 
orthogonal polarity. Then Π contains a Fano sub plane) 
actually implies that there are Ω(n3) copies of PG(2 2) in 
any plane satisfying the hypotheses, and echoing Petrak , 
perhaps one could find sub planes of order 4 for n large 
enough. We also note that it is crucial in both proofs that 
the absolute points form a line. When n is odd, the proof 
fails (as it must  since the proofs do not detect if Π is 
Desargesian or not). Finally, Bill Kantor communicated 
to the author that Theorem  can be proved in an even 
shorter way by using the language of finite incidence 
geometry and a theorem of Ostrom (Theorem There 
exist constants a b > 0 such that (i) P(n d) ∼ n if d ≤ 
n1/2(logn)−a and (ii) P(n d) ∼ nlogn if d ≥ n1/2(logn)b.). 
Using this theorem  it suffices to find a self-polar triangle 
in the projective plane (equivalent to finding the triangle 
vivjvk in our proof). An advantage of our proof is that we 
get an explicit lower bound on the number of Fano 
subplanes in the projective plane, whereas an advantage 
of Kantor s proof is that one does not even require the 
projective plane to be finite. 

Theorem 7.. Let Π be a finite projective plane of even 
order which admits an orthogonal polarity. Then Π 
contains a Fano sub plane. 

Ganley showed that a finite semifield plane admits an 
orthogonal polarity if and only if it can be coordinatized 
by a commutative semifield. A result of Kantor implies 
that the number of no isomorphic planes of order n a 
power of 2 that can be coordinatized by a commutative 
semifield is not bounded above by any polynomial in n. 
Thus, Theorem 7. Applies to many projective planes. 

There are two special circumstances in which one can 
improve Theorem 2. Each indicates the difficulty of 
finding exact values for the parameter ex(n C4). 

The first situation is when q is a square. In this case  Fq 
contains the subfield F√q and this subfield may be used 
to find small graphs that contain many edges. For 
instance ERq contains a subgraph F that is isomorphic to 
ER√q. One can choose m = √q + 1 and let   be the set of 

absolute points in F. These m vertices will also be 
absolute points in ERq and thus are contained in an oval 
(the absolute points of an orthogonal polarity of PG(2,q) 
form an oval when q is odd). If we then consider them 
2vertices in YS, these will be the vertices in F that are 
adjacent to the absolute points of F. The set YS induces a 
1 2(√q −1)-regular graph in F . The set X = S ∪YS will 
span roughly q3/2 8 edges which is much larger than the 
linear in q lower bound provided by Theorem 2.1.1 when 
m = √q + 1. 

The second situation is when q is a power of 2 and q −1 
is prime. Assume that this is the case and consider 
ERq−1. Let F be a sub graph of ERq−1 obtained by 
deleting three vertices of degree q −1. The number of 
vertices of F is (q−1)2 +(q−1)+1−3 = q2−q−2  and the 
number of edges of F is at least 1 2(q−1)q2−3(q−1) = 1 
2q3− 1 2q2−3q +3. This is better than the result of 
Corollary 2.1.2 by a factor of about 1 2q2. A prime of the 
form 2m−1 with m ∈ N is known as a Mersenne Prime. It 
has been conjectured that there are infinitely many such 
primes  but this is a difficult open problem. 

In Sidon sets are used to construct C4-free graphs. For a 
prime power q  these graphs have q2−1 vertices  and 1 
2q3−q+ 1 2 edges when q is odd  and 1 2q3−q edges 
when q is even. These graphs have a degree sequence 
similar to the degree sequence of an orthgonal polarity 
graph and it seemed possible that these graphs could be 
external. However, Theorem 2. can be applied to show 
ex(q2 −1 C4) ≥ 1 2 q3 −O(√q)  which shows that the 
graphs constructed  are not extremal. 

First, we note that the proof of Theorem 7. actually 
implies that there are Ω(n3) copies of PG(2 2) in any 
plane satisfying the hypotheses, and echoing Petrak , 
perhaps one could find sub planes of order 4 for n large 
enough. We also note that it is crucial in both proofs that 
the absolute points form a line. When n is odd, the proof 
fails (as it must  since the proofs do not detect if Π is 
Desargesian or not). Finally, Bill Kantor communicated 
to the author that Theorem 7. can be proved in an even 
shorter way by using the language of finite incidence 
geometry and a theorem of Ostrom (Theorem 5). Using 
this theorem  it suffices to find a self-polar triangle in the 
projective plane (equivalent to finding the triangle vivjvk 
in our proof). An advantage of our proof is that we get an 
explicit lower bound on the number of Fano sub planes 
in the projective plane  whereas an advantage of Kantor s 
proof is that one does not even require the projective 
plane to be finite. 
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