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Abstract - There is a rapid rise in growth exhibited by 
number of Internet of Things (IoT) devices. IoT devices is 
usually connected with the physical world. These devices 
may harvest energy as a power source, which inflict 
particularly rigid operating restrictions. In addition IoT 
devices may need software updates to fix bugs, add 
functionality, or input computational capability. This 
paper proposes in-place code updating to update deployed 
code for IoT energy harvesting devices. This strategy 
applies patches in-place while the code is still running and 
active; which competently eliminate system down time 
and reduce resource demands for updates. 
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1. INTRODUCTION 

Internet of Things (IoT) is an ecosystem of 

connected physical objects that are accessible through 

the internet. The ‘thing’ in IoT could be a person with a 

heart monitor or an automobile with built-in-sensors, i.e. 

objects that have been assigned an IP address and have 

the ability to collect and transfer data over a network 

without manual assistance or intervention. The 

embedded technology in the objects helps them to 

interact with internal states or the external environment, 

which in turn affects the decisions taken.  

The Internet of Things (IoT) is a novel computing 

paradigm that couples sensing devices, computing nodes, 

communication devices with various types of objects in 

physical world for data collection, exchange, and remote 

control. IoT devices often have very tight constraints on 

cost, form factor, and power/energy consumption. These 

devices often rely on ambient power sources such as 

wireless energy, RF energy, solar energy, and 

piezoelectric energy. 

The ambient power is not only scanty but also 

often unreliable. This makes it necessary to equip these 

devices with non-volatile memory to store program state 

in order to ensure forward progress. Often state has to 

be stored and only a couple of instruction can be 

executed per power cycle [1]. 

It is obvious that, IoT devices may need software 

updates to fix bugs, add functionality, or improve 

computational capability. So how to deliver code updates 

to the energy harvesting devices post-deployment is 

another critical concern. This project proposes novel 

strategies to update deployed code for IoT energy-

harvesting devices based on in-place code updating. 

Our objective is to propose a novel in-place 

patching strategy for the three code update scenarios of 

insertion, deletion, and modification that minimizes the 

down time of a device. We aim to develop strategies on 

device down time, code update delivery cost, code 

memory update cost, and runtime performance 

overhead.     

2. EXISTING SYSTEM 

Currently post-deployment code update schemes 

focus mainly on reducing the amount of data transferred 

over the wireless network. This includes proposals 

involving naïve, incremental updates, modular designs, 

and network encoding. These incremental update 

schemes attempt to minimize the code transferred to a 

device by sending only the “delta” difference between 

the old and new images, instead of sending the entire 

image. The new image then is constructed from the old 

image and the delta [2], [3], [4], [5], [6]. 

These approaches have the following steps:  

 transmit the code update,  
 construct a new image if the code update was a 

delta, and  
 Reboot the device using the new code image.  

This approach is called image rewrite. This method has 

several limitations. 

 QOS level of the device is degraded. 
 Rebooting and re-launching is required during 

which it is unresponsive to external events. This 
delay is down time of the device [7], [8]. 

 It takes longer for code updates to be delivered 
to devices because existing image rewrite 
approaches do not work well with incremental 
updating. 

http://www.happiestminds.com/services/internet-of-things/
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 Image rewriting takes longer for code updates to 
be applied once the patches are delivered 
because the whole new code image must be 
rewritten to code memory, even for small 
updates. 

 Image rewriting increases the cost of device by 
requiring larger code memory. Image rewrite 
approaches require the old image to be running 
while constructing or downloading the new 
image. 

 
3. PROPOSED SYSTEM 
 

In energy harvesting systems for IoT devices we 

propose the idea of live code updates. By avoiding the 

above problem in-place through patches we update the 

code image; while the code is still executing and live. It is 

a form of cumulative code update in which only delta 

script is sent to the target device.  

 

Different from other additive update proposals, 

instead of formulating a new image, the delta is applied 

in-place on live code. Since the delta is applied in-place, 

there is no shifting involved. 

 

In-place code needs to manage the situation in 

which code being updated could be actively executing 

and live, unlike image rewriting.  A code update usually 

involves multiple patches in which execution of code 

being patched must be interrupted to avoid unstable 

code. Therefore, the goal of in-place code updating is to 

decrease the set of code memory writes during which 

the code drops into an unstable state. Hence we call this 

set of writes the atomic update set. To minimize the 

automatic update set we propose code patch strategy. 

 

It proposes in-place patching for insertion, 

deletion and modification code update; 

Code insertion is performed by placing a jump from the 

location of the insertion point in the original image to the 

inserted code. Following the insertion point a jump back 

to the instruction immediately is added to continue 

execution in the original image, at the end of the inserted 

code. 

 

Code deletion is performed by placing a jump from the 

location of the first deleted instruction in the original 

image to another jump instruction. The next jump jumps 

back to the original image directly following the last 

deleted instruction. 

 

Code modification is performed in a regular fashion 

except, after execution of the modified code, control flow 

jumps to the point after the old code in the original 

image. A code update with multiple patches has two 

phases: 

 

Phase 1: The modified or all new code is written to free 

space in code memory. Since no writes are performed on 

the original image, the code is never inconsistent. 

 

Phase 2: All jumps to the code written in Phase 1 are 

written atomically. Each of these jumps has the potential 

to put the code into an inconsistent state and modifies 

the functionality of the old image. Until all writes 

completes the execution of this code must be prevented. 

Rather the size of patches themselves, the atomic update 

set of jumps to patched code is proportional to the 

number of locations which needs to be patched in the 

original image. 

 

3.1 Code Update Approach Comparison 
 

 Device 
Down 
Time 

Reprogramming 
Energy 

Memory 
Requirement 

Naïve  
(Need 

reboot) 

 
(Transfer and write 

whole image) 

 
(Need twice 
code image 

size) 

Incremental  
(Need 

reboot) 

Δ 
(Transfer only delta 

but write whole 
image) 

 
(Need twice 
code image 

size) 

In-place  
(No 

reboot 
needed 
due to 

live 
update) 

 
(Transfer only 

patches and apply 
in-place) 

 
(need only code 

image size) 
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3.2 System Architecture 
 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure -1 System Architecture 

 

4. MODULES 
 

The proposed system consists of five modules; 

4.1 Developer side option to create script and 
maintain version control 
This module involves creating an editor for the 

developers to write programs. The editor involves 

options to create new file, write code, view existing 

code, make changes to existing code, save and 

upload the code. The developer takes inputs from 

the users or the data centre head. He/she then 

creates java programs based on the requirements.    

To maintain version control: 

 For each save and updates of code maintain 

sequence number 

 If (updates found && sequence_no == prevseq) 

─ maintain new copy with same sequence 

─ keep the code ready for update  

 Otherwise 

─  sequence++ 

─ Old patch saved and new file copy kept 

ready for update 

4.2 Live code update via cloud 

In this module the code update is uploaded to the 

cloud. After developer creates java programs and 

generates class files he/she then uploads it to the 

cloud. 

It involves following steps: 

 Start the cloud service 

 USR_AUTH _KEY  call auth_key(User 

Name, PWD) –Authentication key 

registered in UIDaaS 

 If (USR_AUTH_KEY==AUTH_KEY) 

─ Users are granted permission to access 

cloud services 

Update(); 

 Otherwise  

─ Users are not granted permission to 

access cloud service 

4.3 Patch manager to handle new copy , 

compile and execute code 

Patch manager is embedded in the Raspberry pi. 

This unit continuously checks for new updates by 

running a background process. Whenever new 

updates are found it runs the new program. 

The objective of the Patch manager function is as 

follows: 

patchManager( ) 

{ 

 Check the version id and process id 

 Check the code updates 

 If updates found, kill existing process 

and get new code 

 Threaded program to run new code 

                       } 

4.4  Application to view live data from IoT 

based on new changes 

Once the code has been updated it is necessary for 

the users to see the changes made. For this purpose 

a module to view live data is included. It involves 

creating UI application for the users to read the 

updated data values in their required format. 

It consists of the following step: 

 

 User needs to connect to the cloud with 

authentication 

 If (authenticated) 

{ 

     readSensorData(int sensorId) 

{ 
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   ─ Read operation called by reader           

tasks 

   ─ Find data size 

   ─ Create a buffer 

   ─ Read data from cloud 

                acquire(sensorId) 

   ─ Display data at user interface 

} 

                         } 

 

4.5  Integration module 

The functionality of this module is to integrate the 

above mentioned modules and making sure that the 

entire system as a whole works as required. That is 

to update the codes in-place through patches; while 

the code is still live and still executing.  

 

5. ADVANTAGES OF THE EXISTING SYSTEM 

The proposed system has the following capabilities: 

 

 In-place updating reduces the problems 

existing with traditional methods 

 Does not suffer from QOS degradation 

 Code update delivery cost is reduced  

 Reduces the cost to apply the code update 

 Does not require to hold two images i.e., 

requires less memory 

 Rebooting and rewriting is not involved thus 

reducing system down time 

 

6. CONCLUSION AND FUTURE ENHANCEMENT 

In this paper we proposed live code update 

solution that effectively applies patches to code as it 

executes for IoT devices that can; Improve QOS by 

eliminating device down time, Improve 

debug/tune/upgrade turn-around time by shortening 

device reprogramming energy. It significantly reduces 

memory requirements of the device as it does not keep 

the old image. Finally it offers insignificant performance 

overhead. 

The project can be further enhanced by 

generating less number of patches. Frequent patching 

may lead to creation of “holes” in the code. This includes 

future works to deal with fragmentation. May also 

require further research on how to perform updates to 

data; modify semantics of variables and may need to do 

“data migration”. 
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