
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 05 | May -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 66

Live Code Update for IoT Devices in Energy Harvesting Environments

Raksha S1, Sushmitha K1, Deepika B1, Ganavi N1, Chandini S B2

1Student, Dept. of Information Science and Engineering, VVCE, Mysuru, Karnataka, India

2Assistant Professor, Dept. of Information Science and Engineering, VVCE, Mysuru, Karnataka, India

---***--

Abstract - There is a rapid rise in growth exhibited by
number of Internet of Things (IoT) devices. IoT devices is
usually connected with the physical world. These devices
may harvest energy as a power source, which inflict
particularly rigid operating restrictions. In addition IoT
devices may need software updates to fix bugs, add
functionality, or input computational capability. This
paper proposes in-place code updating to update deployed
code for IoT energy harvesting devices. This strategy
applies patches in-place while the code is still running and
active; which competently eliminate system down time
and reduce resource demands for updates.

Key words: Live Code, Live code Update for IoT devices,
IoT devices, Energy Harvesting Environments, Live Code
for IoT devices.

1. INTRODUCTION

Internet of Things (IoT) is an ecosystem of

connected physical objects that are accessible through

the internet. The ‘thing’ in IoT could be a person with a

heart monitor or an automobile with built-in-sensors, i.e.

objects that have been assigned an IP address and have

the ability to collect and transfer data over a network

without manual assistance or intervention. The

embedded technology in the objects helps them to

interact with internal states or the external environment,

which in turn affects the decisions taken.

The Internet of Things (IoT) is a novel computing

paradigm that couples sensing devices, computing nodes,

communication devices with various types of objects in

physical world for data collection, exchange, and remote

control. IoT devices often have very tight constraints on

cost, form factor, and power/energy consumption. These

devices often rely on ambient power sources such as

wireless energy, RF energy, solar energy, and

piezoelectric energy.

The ambient power is not only scanty but also

often unreliable. This makes it necessary to equip these

devices with non-volatile memory to store program state

in order to ensure forward progress. Often state has to

be stored and only a couple of instruction can be

executed per power cycle [1].

It is obvious that, IoT devices may need software

updates to fix bugs, add functionality, or improve

computational capability. So how to deliver code updates

to the energy harvesting devices post-deployment is

another critical concern. This project proposes novel

strategies to update deployed code for IoT energy-

harvesting devices based on in-place code updating.

Our objective is to propose a novel in-place

patching strategy for the three code update scenarios of

insertion, deletion, and modification that minimizes the

down time of a device. We aim to develop strategies on

device down time, code update delivery cost, code

memory update cost, and runtime performance

overhead.

2. EXISTING SYSTEM

Currently post-deployment code update schemes

focus mainly on reducing the amount of data transferred

over the wireless network. This includes proposals

involving naïve, incremental updates, modular designs,

and network encoding. These incremental update

schemes attempt to minimize the code transferred to a

device by sending only the “delta” difference between

the old and new images, instead of sending the entire

image. The new image then is constructed from the old

image and the delta [2], [3], [4], [5], [6].

These approaches have the following steps:

 transmit the code update,
 construct a new image if the code update was a

delta, and
 Reboot the device using the new code image.

This approach is called image rewrite. This method has

several limitations.

 QOS level of the device is degraded.
 Rebooting and re-launching is required during

which it is unresponsive to external events. This
delay is down time of the device [7], [8].

 It takes longer for code updates to be delivered
to devices because existing image rewrite
approaches do not work well with incremental
updating.

http://www.happiestminds.com/services/internet-of-things/

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 05 | May -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 67

 Image rewriting takes longer for code updates to
be applied once the patches are delivered
because the whole new code image must be
rewritten to code memory, even for small
updates.

 Image rewriting increases the cost of device by
requiring larger code memory. Image rewrite
approaches require the old image to be running
while constructing or downloading the new
image.

3. PROPOSED SYSTEM

In energy harvesting systems for IoT devices we

propose the idea of live code updates. By avoiding the

above problem in-place through patches we update the

code image; while the code is still executing and live. It is

a form of cumulative code update in which only delta

script is sent to the target device.

Different from other additive update proposals,

instead of formulating a new image, the delta is applied

in-place on live code. Since the delta is applied in-place,

there is no shifting involved.

In-place code needs to manage the situation in

which code being updated could be actively executing

and live, unlike image rewriting. A code update usually

involves multiple patches in which execution of code

being patched must be interrupted to avoid unstable

code. Therefore, the goal of in-place code updating is to

decrease the set of code memory writes during which

the code drops into an unstable state. Hence we call this

set of writes the atomic update set. To minimize the

automatic update set we propose code patch strategy.

It proposes in-place patching for insertion,

deletion and modification code update;

Code insertion is performed by placing a jump from the

location of the insertion point in the original image to the

inserted code. Following the insertion point a jump back

to the instruction immediately is added to continue

execution in the original image, at the end of the inserted

code.

Code deletion is performed by placing a jump from the

location of the first deleted instruction in the original

image to another jump instruction. The next jump jumps

back to the original image directly following the last

deleted instruction.

Code modification is performed in a regular fashion

except, after execution of the modified code, control flow

jumps to the point after the old code in the original

image. A code update with multiple patches has two

phases:

Phase 1: The modified or all new code is written to free

space in code memory. Since no writes are performed on

the original image, the code is never inconsistent.

Phase 2: All jumps to the code written in Phase 1 are

written atomically. Each of these jumps has the potential

to put the code into an inconsistent state and modifies

the functionality of the old image. Until all writes

completes the execution of this code must be prevented.

Rather the size of patches themselves, the atomic update

set of jumps to patched code is proportional to the

number of locations which needs to be patched in the

original image.

3.1 Code Update Approach Comparison

 Device
Down
Time

Reprogramming
Energy

Memory
Requirement

Naïve 
(Need

reboot)


(Transfer and write

whole image)


(Need twice
code image

size)

Incremental 
(Need

reboot)

Δ
(Transfer only delta

but write whole
image)


(Need twice
code image

size)

In-place 
(No

reboot
needed
due to

live
update)


(Transfer only

patches and apply
in-place)


(need only code

image size)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 05 | May -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 68

3.2 System Architecture

Figure -1 System Architecture

4. MODULES

The proposed system consists of five modules;

4.1 Developer side option to create script and
maintain version control
This module involves creating an editor for the

developers to write programs. The editor involves

options to create new file, write code, view existing

code, make changes to existing code, save and

upload the code. The developer takes inputs from

the users or the data centre head. He/she then

creates java programs based on the requirements.

To maintain version control:

 For each save and updates of code maintain

sequence number

 If (updates found && sequence_no == prevseq)

─ maintain new copy with same sequence

─ keep the code ready for update

 Otherwise

─ sequence++

─ Old patch saved and new file copy kept

ready for update

4.2 Live code update via cloud

In this module the code update is uploaded to the

cloud. After developer creates java programs and

generates class files he/she then uploads it to the

cloud.

It involves following steps:

 Start the cloud service

 USR_AUTH _KEY  call auth_key(User

Name, PWD) –Authentication key

registered in UIDaaS

 If (USR_AUTH_KEY==AUTH_KEY)

─ Users are granted permission to access

cloud services

Update();

 Otherwise

─ Users are not granted permission to

access cloud service

4.3 Patch manager to handle new copy ,

compile and execute code

Patch manager is embedded in the Raspberry pi.

This unit continuously checks for new updates by

running a background process. Whenever new

updates are found it runs the new program.

The objective of the Patch manager function is as

follows:

patchManager()

{

 Check the version id and process id

 Check the code updates

 If updates found, kill existing process

and get new code

 Threaded program to run new code

 }

4.4 Application to view live data from IoT

based on new changes

Once the code has been updated it is necessary for

the users to see the changes made. For this purpose

a module to view live data is included. It involves

creating UI application for the users to read the

updated data values in their required format.

It consists of the following step:

 User needs to connect to the cloud with

authentication

 If (authenticated)

{

 readSensorData(int sensorId)

{

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 05 | May -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 69

 ─ Read operation called by reader

tasks

 ─ Find data size

 ─ Create a buffer

 ─ Read data from cloud

 acquire(sensorId)

 ─ Display data at user interface

}

 }

4.5 Integration module

The functionality of this module is to integrate the

above mentioned modules and making sure that the

entire system as a whole works as required. That is

to update the codes in-place through patches; while

the code is still live and still executing.

5. ADVANTAGES OF THE EXISTING SYSTEM

The proposed system has the following capabilities:

 In-place updating reduces the problems

existing with traditional methods

 Does not suffer from QOS degradation

 Code update delivery cost is reduced

 Reduces the cost to apply the code update

 Does not require to hold two images i.e.,

requires less memory

 Rebooting and rewriting is not involved thus

reducing system down time

6. CONCLUSION AND FUTURE ENHANCEMENT

In this paper we proposed live code update

solution that effectively applies patches to code as it

executes for IoT devices that can; Improve QOS by

eliminating device down time, Improve

debug/tune/upgrade turn-around time by shortening

device reprogramming energy. It significantly reduces

memory requirements of the device as it does not keep

the old image. Finally it offers insignificant performance

overhead.

The project can be further enhanced by

generating less number of patches. Frequent patching

may lead to creation of “holes” in the code. This includes

future works to deal with fragmentation. May also

require further research on how to perform updates to

data; modify semantics of variables and may need to do

“data migration”.

REFERENCES

[1] “NAND Flash 101; An Introduction to NAND Flash
and How to Design It In to Your Next Product”,
https://www.micron.com/~/media/documents/pro
ducts/technical-note/nand-
flash/tn2919_nand_101.pdf.

[2] R. K. Panta, S. Bagchi, and S. P. Midkiff, “Zephr:
Efficient Incremental Reprogramming of Sensor
Nodes Using Function call Indirections and Difference
Computation”, in USENIX Annual Technical
Conference, June 2009.

[3] R. K. Panta and S. Bagchi, “Hermes; Fast and Energy
Efficient Incremental Code Updates for Wireless
Sensor Networks”, in International Conference on
Computer Communications (INFOCOM), April 2009.

[4] W. Dong, Y. Liu, C. Chen, J. Bu, C. Huang, and Z. Zhao,
“R2: Incremental Reprogramming Using Relocatable
Code In Networked Embedded Systems,” IEEE
transactions on Computers, Sept 2013.

[5] W. Dong, C. Chen, J. Bu, and Y. Liu, “Optimizing
Relocatable Code for Efficient Software Update In
Networked Embedded Systems,” ACM Transactions
on Sensor Networks, July 2014.

[6] W. Li, Y. Zhang, J. Yang, and J. Zheng, “UCC: Update-
conscious Compilation for Energy Efficiency in
Wireless Sensor Networks,” in conference on
Programming Language Design and Implementation
(PLDI), June 2007.

[7] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M.
Welsh, “Fidelity and Yield in A Volcano Monitoring
Sensor Network,” in Symposium on Operating System
Design and Implementation (OSDI), November 2006.

[8] Y. Chen, O. Gnawali, M. Kazandjieva, P. Levis, and J
Regehr, “Surviving Sensor Network Software Faults,”
in Symposium on Operating Systems Principles
(SOSP), October 2009.

https://www.micron.com/~/media/documents/products/technical-note/nand-flash/tn2919_nand_101.pdf
https://www.micron.com/~/media/documents/products/technical-note/nand-flash/tn2919_nand_101.pdf
https://www.micron.com/~/media/documents/products/technical-note/nand-flash/tn2919_nand_101.pdf

