
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 3629

Automated Static Analysis: Survey of Tools

Eati Sri Sai Srujan1 , Chaitanya J.V.N.M2 , A. Sai Manikanta3

123Student, Department of Computer Science, VIT University, Vellore.

---***---
ABSTRACT: Not any error detection tool, is capable of

detecting, processing and rectifying all the errors. Our

main aim is to increase the level of authenticity that ASA

(Automatic Static Analysis) can provide us. These Static

analysis tools are used to check for vulnerabilities in

systems and programs, as the correctness or authenticity

of the program is the greatest concern in developing them

and verifying them prior to their release . These tools use a

wide variety of functions, to prevent many errors and

loopholes from occurring at many different stages of the

programs. But still, ASA tools provide a lot of false

positives that again require a lot of human involvement to

rectify them. Here we review the different techniques, and

methods that are primarily used in Automatic Static

Analysis, and also that coding concerns that arise in the

process.

Key Words: Automated Static Analysis, Error

Detection, Tools, Refactoring, Metrics.

1.INTRODUCTION

Now-a-days we use software tools for literally

everything and anything, as their ease of use and

applications are very high, but there still exits one huge

flaw with these tools, namely their security. Low level

code, i.e. code written by people who have little to no

knowledge about security in programming creates many

problems. How so ever the code is not perfect, hence we

need to eliminate and rid the code of such imperfections

for our code to run smoothly and safely, else it may lead

to disastrous results. So, we can justify the investments

we put in tackling such security issues. Most of the leaks,

and hacks now-a-days occur due to no proper security in

the code that is being used by people.

Most of the Huge Companies understand this risk and

will stay many steps ahead in maintaining security as, if

the security constraints are not met, they know they will

lose customers and it will snowball into a huge loss for

the company. So, finding and correcting bugs and errors

in the code is of the foremost importance for them. And

also, we need to educate the programmers in terms of

Security on how important it is and ow to achieve it as

they play the biggest role in avoiding these, because if

they take appropriate measures while writing the code

itself all these difficulties will be kept to a minimum.

Now these bugs, to be found take hours and hours of

manual work, and as humans are never perfect some

bugs might still be present making the whole process

don’t until now redundant. So, we trust this job to

machines to identify and rectify these imperfections that

cause security issues in a fraction if the time we take to

do the same thing. But even these tools, are not perfect

and have their flaws like, for suppose some tools are able

to find bugs that are of a certain kind or belong to a

certain class, but miss out on some varieties of bugs that

the tool can’t effectively find and correct. But we can use

multiple tools on the same code to minimize the error

level. The importance of these ASA tools can be seen

clearly from the fact that many big industries and

companies like Apple, Microsoft and Google, invest a lot

in these to keep their customer base intact.

ASA can also be used to rectify some common problems

like garbage values, unused data, compliance with

coding, improper declarations, null pointers, infinite

loops, etc. So, when a tool can be so flexible and servers

so many purposes, it can have some problems. To get the

most out of these tools, the tests are run pre-emptively,

before the software is rolled out, so that they can get

more done before the users report bugs and they start

flagging them, and after the roll out other tests are made

to make sure al the loopholes are fixed.

Also in a study, it was found out that ASA tools can

distinguish between low quality components and high

quality components. High quality components of the

code are those that were coded or programmed properly

with very little to no margin of error and provide

maximum security, where are low quality components

are those components that pose the utmost threat to

security because of the improper coding and structure

used in them. As, these low-level components can be

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 3630

distinguished, they can be rectified with the help of the

tool or even if the tool can’t repair it, it can be repaired

manually, and also by that we rare reducing the entirety

of problems that we manually have to go through, by us

selecting only important and complicated parts that need

monitoring.

But as we know these Static Analysis tools have some

limitations and some shortcoming like having a very high

false positive rate. False positives are those that are

classified as not a threat that is positive but actually they

are a bug. These false positives are those when the tools

alerts us of a fault but in fact it isn’t. Similarly, a true

positive is when the tool actually gives us an alert when

there is actually a bug or a flaw. Generally, developers

and users are only interested in detecting true positives

and true negatives. So, we need out tools to maintain a

very high true positive rate, a low false positive rate and

a very low false negative rate. The perfect Static Analysis

tool will have zero false positive and false negative rates.

2. TOOLS AND TESTING

The main purpose of automated static analysis tools is to

detect anomalies in code and report them. There can be a

wide range of anomalies like not following the coding

standards, having dead code and unused data, a null

pointer or a void pointer being dereferenced, security

issues, infinite loops, and other arithmetic problems.

These anomalies significantly affect the running of the

software and can cause potential failures. Earlier, the

lexical analyser was used to deal with static analysis but

now we have tools to help us in analysis and they have

better functioning capabilities. Going forward we are

going to discuss the tools available for automated static

analysis and also discuss certain metrics which can be

used to compare these different tools.

A static analysis tool must have minimal false positives

and false negative while having maximal true positives.

The tool must be able to predict code refactoring

modifications effectively. The different kinds of tools

currently available are RATS, Cppcheck and Flawfinder.

These tools have failry recent releases and are not out

dated.

2.1 Cppcheck

Cppcheck is a static analysis tool which used for C and

C++ languages. It was created by Daniel Marjamaki. This

tool can check for anomalies in non-standard code as

well. The analysis checks can be performed at a source

code level. This tool is more focused towards rigorous

code checks. Syntax errors are not detected by

Cppcheck.

2.2 RATS

The rough auditing tool for security is an analysis tool

developed by Secure Software Engineers. It is an open

source tool which is fast and easily integrated without

overhead. RATS can be used for various languages like C,

C++, PERL, PHP and Python. The tools makes an analysis

of the source code and can detect things that are not

errors.

2.3 Flawfinder

Flawfinder is a program that examines C and C++ source

code and reports the security weaknesses and sorts it by

risk level. Flawfinder has a built-in database consisting

of known anomalies and this tool searches for problems

in the database and then reports them if there is a match.

It is run from Command line of the system and its output

can be customised. Flawfinder was developed by David

Wheeler.

These tools are predominantly used to find anomalies

and errors in C, C++, PERL, PHP, Python. Apart from this

there are special tools for static analysis of code in JAVA.

Three of these tools include IntelliJ IDEA, Jlint and

FindBugs.

2.4 IntelliJ IDEA

IntelliJ IDEA is a comprehensive development

environment which is used to provide special tools for

development including a tool for code inspection. It has a

feature for code refactoring . It was developed by the

JetBrains company and inspects the code by using 632

concerns which are organized into 49 groups.

2.5 Jlint

Jlint is a free static analysis tool that analyses the Java

Bytecode. Syntactic checks and data flow analysis are

done by Jlint. It detects synchronization problems by

building a lock graph and verifying whether the graph is

cycle free or not.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 3631

2.7 FindBugs

Again FindBugs is a free tool which uses static analysis to

inspect the Bytecode for faults and maps the faults to the

java source code. It is java oriented and runs with any

virtual machine. It can analyse programs written in any

version of java.

To analyse which of the above tools is better and which

tool to use, depending on the programming language

used, we can use certain metrics to measure the

performance capabilities of the tools.

1. Fault detection ratio

This gives the ratio of faults that are detected by

the tool. Detection ratio uses the number of fault

fixes fund in the CVS repository.

Detection Ratio =

No. of faults detected by ASA

Total no. of faults fixed

2. Refactoring ratio

This tells us how effective is the tool in finding

code that can be later modified to improve the

design.

Refactoring ratio =

 No. of performed refactoring recommended by

ASA

Total no. of refactorings performed

3. False Positive ratio

This gives us the ratio of false positives detected

by the tool and the number of actual concerns.

False Positive Ratio =

 No. of false positives

 No. of coding concerns

4. False Negative Ratio

This gives us the ratio of false negatives and the

number of modifications made.

False Negative Ratio = No. of false negatives

 No. of modificaations

3. RESULTS AND CONCLUSIONS: -

This section presents the comparative study of the above

mentioned three static code analysis tools for security

and the ASA tools for Java code.

Comparison of ASA tools for security can be done on

basis of many scales, for example by their execution

time, on the premise of classification of vulnerabilities a

tool can discover, precision, accuracy of the tools.

However, in this paper we only compare on basis of time

and classification of vulnerabilities.

3.1 EXECUTION TIME

On the basis of execution time we found that RATS was

the quicker than Flawfinder and Cppcheck. Cppcheck

was slowest in execution of practically every application.

Depending on the application, one can choose between

RATS or Flawfinder and Cppcheck.

3.2 CLASSIFICATION OF VULNERABILITIES

The categories of vulnerabilities that we considered for

our review are: -

 Improper Input Validation

 OS Command Injection

 Buffer Overflow

 Array Index Out of Bounds- Read

 Uncontrolled Format String

 Integer Overflow or Wraparound

 Execution with Unnecessary Privileges

 Race Condition

 Divide by Zero

 Memory Leak

 Dead Code

 Array Index Out of Bounds

 Reliance of Untrusted Inputs in a Security

Decision

Based upon the outcomes after these vulnerabilities are

included in the same application, the application is

subjected to testing with all the three ASA tools to find

the detection ratio.

 Detection Ratio =

 No. of vulnerabilities detected

 Total vulnerabilities introduced

The main parameter to be considered here is detection

ratio and among all the ASA tools considered, Flawfinder

has the highest ratio while for Cppcheck and RATS it

turned out to be the same. This does not mean that using

Flawfinder is recommended. This ratio is subject to the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 3632

types of vulnerabilities introduced. If one has to choose

among the tools for particular vulnerability, then he may

go by the detection in that particular vulnerability or if

its aggregate of categories, he may go by the detection

ratio.

Moving to the tools for analysing the Java codes, we are

dealing with IntelliJ IDEA, Jlint and FindBugs. Since the

more the detection of refractorings implied better tool

for ASA, we find that IntelliJ IDEA is more successful in

Java documentation, unused variables and data

members, redundant casting and some other categories

compared to the other tools in concern. Minimization of

false positives or false negatives is done only with

detection. Abundance of these two will not suffice the

needs of developers to work on it.

The false positive ratios for IDEA are higher than for

FindBugs with higher ratios in the refactoring class. All

of the false positive ratios for Jlint are 100%.

False negative ratios refer to the percent of faults or

refactorings that are not detected by the static analysis

tools. IDEA again can more successfully detect false

negatives compared to FindBugs. Since Jlint missed all of

the refactorings and faults, all of the false negative ratios

for Jlint are 100%.

The fault detection in the three ASA tools were below the

minimum which means all these tools would just

insignificantly help the engineers to identify the reasons

for future reported failures.

ASA tools sometimes report unnecessary errors that are

not real faults or necessary refractorings. So developers

utilizing ASA devices must look at numerous false

positives to choose which ones are genuine. So we can

conclude that ASA tools that we reviewed are not

effective in detecting the faults with respect to the cost of

performing analysis with these tools.

Whether the tools maybe of open source, commercial or

developed by researchers, the application of these tools

vary in number and types of concerns they detect and

handle, programming languages they support. So

selection of tools is to be done with respect to the

preferred application.

FUTUREWORKS

For the ASA tools used for security, we have considered

execution and categories of vulnerabilities as parameters

for comparative evaluation. Different parameters, for

example, exactness, precision of the instruments can

likewise be computed and looked at by considering false

positives and false negatives.

In future work, we plan to look at coding concerns

revealed by extra ASA tools, and study programming

written in other programming languages. Likewise, we

plan to distinguish the sorts of faults that ASA tools can

recognize more effectively.

REFERENCES

[1] Vinícius Rafael Lobo de Mendonça, Cássio Leonardo

Rodrigues, Auri Marcelo Rizzo Vincenzi, and Fabrízzio

Alphonsus A. de M. N. Soares, “Static analysis techniques

and tools: a systematic mapping study”.

[2] Vijay D’Silva, Daniel Kroening, and Georg

Weissenbacher, “A survey of automated techniques for

formal software verification”.

[3] Jiang Zheng, Laurie Williams,

Nachiappan Nagappan, Will Snipes, John P. Hudepohl,

and Mladen A. Vouk,

“On the value of static analysis for

fault detection in software”.

[4] Fadi Wedyan, Dalal Alrmuny, and James M. Bieman,

“The effectiveness of automated static analysis tools for

fault detection and refactoring prediction.”

[5] Hanmeet Kaur Brar and Puneet Jai Kaur,

“ Static analysis tools for security: a comparative

evaluation.”

