
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 3548

Implement rCUDA Framework on Embedded System

Mohamed Hussain 1, Viraj Choksi 2, M.B.Potdar 3

1 Research scholar, Bhaskaracharya Institute for Space Applications and Geo-Informatics (BISAG), Gujarat, India
2 Project Scientist, Bhaskaracharya Institute for Space Applications and Geo-Informatics (BISAG), Gujarat, India
3 Project Director, Bhaskaracharya Institute for Space Applications and Geo-Informatics (BISAG), Gujarat, India

---***---

Abstract - CUDA is programming model developed and
introduced by NVIDIA Company in 2006. This programming
works on heterogeneous environment where we have two
different types of processors CPU and GPU processors.Using
CUDA programming allows the programmer to take the
advantage of a GPU processor to execute a code which
reduces the time of the execution. However using GPU
processor in the system comes with some drawbacks such as
increase the acquisition cost of the system, increase the power
consumption, require more space for the new GPU hardware
and in the system it relatively low use a GPU processor.
To overcome those drawbacks in the system we going to use
one of the visualization techniques to enable the application to
use the remote GPU to execute the code .There are many
visualization techniques which allows the programmer to use
the remote GPU such as VGPU, GVirtuS, GridCuda, Shadowfax,
GViM ,vCUDA, rCUDA and DS-CUDA.

In this paper we are going to implement rCUDA on one of
embedded system platform (Jetson Tk1) to overcome those
drawbacks on in the system .rCUDA is platform designed and
developed by team of developer in Technical University of
Valencia, Spain. The resonances of implementing rCUDA
platform in the system in stand of the other platforms because
it has more fidelity, showing better performance comparing to
another visualization techniques and also it allows sharing the
GPU processor between the clients.

Key Words: CUDA, rCUDA, embedded system, and Jetson
Tk1.

1. INTRODUCTION

GPU (Graphics Processing Unit) is processor designed
initially to handle the graphics operations especially after
the graphics application become more complicated and
present more overhead on CPU processor. the GPU processor
became more popular as the demand for graphic
applications increased. It has an ability to process the data in
parallel way which boosts the performance and also it able
to deal with 2D and 3D data. The success of the GPU cased
the software developer start using the GPU for general
purpose computation which is called GPGPU.
GPGPU (general purpose computing on graphics processing
units) is methodology of using the GPU which is mainly

designed for graphics operation to perform the general
purpose computations .GPGPU is always used for an

applications which requires high-power CPUs such as,
chemical physics, computational fluid dynamics image
analysis and many other fields. But using the GPU processor
in the system comes with some drawbacks such as
increasing in the power consumptions, increase the
acquisition costs, it also requires more space to fit the new
hardware and the system not require the GPU processing in
all operations which makes the GPU processor idle most of
the time.

As mentioned previously adding the GPU processor to the
system will increase the power consumption around 30%
[1], the reasons of incensement in the power consumption is
two processors are used in the system instead of one. The
second drawback is increasing in an acquisition costs and
this because of adding a new hardware to the system which
is also required more space to fit in. Adding the GPU
processor in the system it doesn't means that the
applications will use it all the time, it will only use to execute
part of an application code which requires a high number of
repetitions, which means the GPU processor will be most the
time idle.

CUDA (Compute Unified Device Architecture) is a
programming model developed and introduced by NVIDIA in
2006, this programming platform works in heterogeneous
platform has two different types of processors CPU and GPU
processors, This platform one of the programming modules
allows the programmer to use the power of the GPU
processors for general purpose computations.it support
different programming language such as C,C++,Fortran and
Python which make it easier for the programmer to write the
code without requirement to learn a new language, however
CUDA programming model its only support NVIDIA
hardware.

rCUDA (remote CUDA) is a middleware enables the device to
use the remote GPU of another device to execute the GPU
code. This platform developed by parallel architectures
Group from Technical University of Valencia (Spain).This
framework gives the applications concurrent access to GPUs
installed in other nodes in cluster. In rCUDA if there are
more than one application needs to access the GPU, the
rCUDA middleware will be responsible to share the GPU
between the applications. The source code of the
applications does not requires any modification in the code
to use the remote GPU, it only present overhead in execution
time which is usually less than 4% [7].

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 3549

Fig -1: rCUDA Simple scenario [1]

Jetson TK1 (also called Tegra K1) is an embedded board
designed and developed by NIVIDA company.it is one of the
two solutions released by the NVIDIA for embedded system
support GPU processor.
Jetson TK1 has 192 CUDA GPU Cores (Kepler GPU), 4 ARM
Cortex-A-15 CPUs and 2 ISP cores. Its also support the CUDA
programming which allows the programmer able to take the
advantage of the GPU processor to execute the code.
Moreover, the Jetson tk1 board has a low cost and low power
consumption comparing to a PC with GPU processor which
makes it a good choice for researcher and student working
on GPU programming. In this paper we are going to
implement rCUDA platform on Jetson TK1 board to use its
GPU to execute the code of the remote devices.

Fig-2 Jetson TK1 board

2. rCUDA FRAMEWORK ARCHITECTURE

The rCUDA framework client-server distributed architecture
consist of two software modules as shown in the figure(3)
below:

Fig-3 rCUDA Architecture[1]

1. Client Middleware: is consists of collection of

wrappers responsible for replace runtime library in
the client machine with rCUDA libraries. Client
middleware also in charge of forwarding the CUDA
API calls generated by the applications. At the
runtime the client middleware will be responsible to
pass the API call from the client machine and it will
wait for the result from the server.

2. Server Middleware: is installed in the machine
which own the GPUs. it will be responsible for
receiving , interpreting and execute the API call send
by the clients machines. rCUDA platform able to
different clients at the same time. to handle more
than one client at the same time Server middleware
multiplex the access to the GPU processor between
the clients, And for effective multiplexing rCUDA
integrated with SLURM scheduler which is an open
source job scheduler to gives more efficient
throughput.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 3550

The communication between the client and the server it will
be through the network. To establish the communication
between the server and the client we can use one of two
protocols such as TCP or INFINIBAND. TCP protocol used for
Ethernet connection. But, INFINIBAND protocol is used for
high speed connection.

3.IMPLEMENTING rCUDA ON JETSON TK1:

To implement rCUDA on the system first you have to
download it from www.rcuda.net. For each version of CUDA
we have to use specific rCUDA version. For Jetson TK1 there
are a special version of rCUDA called 15.07. this version
support CUDA version 6.5.

A. Equipment Used In The Experiment

In this experiment we use Jetson TK1 as the server with the
previous specifications, and in client side we are going to use
laptop with the following specifications:

 CPU Intel Core i5 520M / 2.4 GHz.

o 4GB DDR3 Memory.

o 10/100/1000 Gigabit Ethernet network
interface adaptor.

o OS Ubuntu 14.04 32-bit.

B. Experiment Description.

In this demo we are going to use rCUDA v15.07 along with
CUDA 6.5,and for commutation between the client and the
server TCP protocol are used. The demo can be divided into
two parts:

1. Server Side:

After downloading the rCUDA files,first Decompress the
rCUDA package using any decompress software. Then copy
the rCUDA folder to the machine server. To run rCUDA on the
server first the environment should be prepared using export
command. Export command will add the variable to
environment variables of a shell. This variables are pass to
child processes which we can use it to run the programmes.
in this scenario LD_LIBRARY_PATH variable will be pointed
to the location of the CUDA libraries which is typically located
in “/usr/local/cuda/lib64” and if cuDNN libraries are going to
used it should also added to LD_LIBRARY_PATH variable.
After adding the path of CUDA libraries rCUDA require to
mention number of GPUs in the system, and this done by
export RCUDA_DEVICE_COUNT=1 command. Finally after
preparing the environment and assigning the number of the
GPUs in the system we can run the rCUDA binary file by
./rCUDAd command. when the rCUDA run it will show the
following output figure(4).

Fig-4 rCUDA server running.

At this point the server will start listening to incoming call
from the client, for that the client and server should be in the
same network to be able to communicate. For debugging
purpose we can run rCUDA in another way where we can see
the communication and passing calls between the server and
the client.

2. Client Side:

As mentioned previously the rCUDA client is consist of
wrappers replace the CUDA runtime libraries, in this way the
application which use rCUDA will not be aware about using a
remote GPU so that no need any modifications in the codes.
rCUDA client distributed in a set of files: “libcuda.so.m.n 1 ,
libcudart.so.x.y 2 , libcublas.so.x.y, libcufft.so.x.y,
libcusparse.so.x.y , libcurand.so.x.y and libcudnn. so.x.y.” [7]
those files are copied in the clients machines.

To run the code in remote GPU first CUDA compiler
should be installed in the client machine. CUDA compiler will
generate the binary file of the code. After generating the
binary file from the compiler In order to properly execute the
applications using the rCUDA library we have to set the
following variable:

 Export LD_LIBRARY_PATH: which point to the
location of the rCUDA libraries.

 RCUDA_DEVICE_COUNT: indicate the number of
GPUs available in the remote server

 Export RCUDA_DEVICE_0=192.168.x.x: contains the
IP address of the server in the network.

When rCUDA works properly it will show the normal output
of the application.

http://www.rcuda.net.for/

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 3551

Fig-5 the output of the code.

3. CONCLUSION AND FUTURE WORK

In this paper rCUDA framework has been implemented in
Jetson TK1 board which is an embedded board has CPU and
GPU processors. After implement the rCUDA framework we
become able to access the GPU from the remote PC. the
remote application it will able to use the GPU of Jetson TK1 to
execute the code.in the future work we going to measure the
overhead present on the system when we use rCUDA
framework to execute the applications.

6. References

[1]. C. Reaño, F. Pérez and F. Silla, "On the Design of a Demo
for Exhibiting rCUDA," 2015 15th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing,
Shenzhen, 2015
[2]. F. Silla, J. Prades, S. Iserte and C. Reaño, "Remote GPU
Virtualization: Is It Useful?," 2016 2nd IEEE International
Workshop on High-Performance Interconnection Networks
in the Exascale and Big-Data Era (HiPINEB), Barcelona, 2016
[3]. M. S. Vinaya, N. Vydyanathan and M. Gajjar, "An
evaluation of CUDA-enabled virtualization solutions," 2012
2nd IEEE International Conference on Parallel, Distributed
and Grid Computing, Solan, 2012
[4]. J. Duato, A. J. Peña, F. Silla, R. Mayo and E. S. Quintana-
Ortí, "rCUDA: Reducing the number of GPU-based
accelerators in high performance clusters," 2010
International Conference on High Performance Computing &
Simulation, Caen, 2010.
[5]. C. Reaño and F. Silla, "A Performance Comparison of
CUDA Remote GPU Virtualization Frameworks," 2015 IEEE

International Conference on Cluster Computing, Chicago, IL,
2015
[6]. NVIDIA, NVIDIA CUDA C Programming Guide 6.5, 2014
[7]. rCUDA v16.11 User’s Guide November, 2016

