’// International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

JET Volume: 04 Issue: 04 | Apr -2017

www.irjet.net

p-ISSN: 2395-0072

ASYMPTOTIC PROPERTIES OF THE DISCRETE STABILITY TIME SERIES
WITH MISSED OBSERVATIONS BETWEEN TWO-VECTOR
VALUED STOCHASTIC PROCESS

M.A.Ghazal?l, A.LLEl-Deosokey?, M.A.Alargt3

1Department of Mathematics, Faculty of Science, University of Damietta, Egypt.
2Lecture faculty of computer science and information system 6th of October University, Egypt.
3Department of Mathematics, Faculty of Science, University of Damietta, Egypt.

Abstract - In this paper, we defined the Expanded finite
Fourier transform of the strictly stability (r + s)vector

valued time series where there are some randomly missed
observations, asymptotic moments are derived and the
application will be studied .
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1.INTRODUCTION

Many authors, as e.g. Brillinger [1]; Dahlhaus[3]; Ghazal
and Farag [4] studied "The estimation of the spectral
density, autocovariance function and spectral measure of
continuous time stationary processes'; E.A,El-Desokey[9]
studied "Some properties of the discrete expanded finite
Fourier transform with missed observations'’; M.A.Ghazal,
G.S. Mokaddis and A.El-Desokey[10],[11] are Studied "The
Spectral Analysis of strictly stationary continuous time
series' and ""Asymptotic Properties of spectral Estimates of
Second-Order with Missed Observations'. The paper is
organized as the following: Sectionl. Introduction, we

develop asymptotic properties of estimates the desired z,
a(u) In Section 2, the Asymptotic properties of Expanded

finite Fourier transform with missed observations was
discussed in section 3, section 4 we will apply our theoretical
study in two cases in climate and economy.

2. ASYMPTOTIC PROPERTIES OF ESTIMATES
THE DESIRED 4 , a(u)

Consider an (I +S) vector-valued stability series

Zt) =[x YOI,

(2.1)

t=011%2,..... with X (t) - r vector-valued
Y (t) s vector-valued.

We assume the series (2.1) is (I + S) stability vector-valued

whose moments exist, we define the means as

EX(t)=C, , EY()=C, 2.2)

The covariances
E{X(t+u)-C,IIX(t)-C,I" |=C,(u),
E{X(t+u)-CIY®-C,I'}=C, ). ©3)

EQY(t+u)-C,IY()-C,I" }=C,, (u) .
and the second-order spectral densities

f()=@n" 30, WExpEiw)

f,()=(27)" 3C, (U)Exp(id)

u=—o0

(2.4)

f, (A)=(7)" chw (U) Exp(-iAu)

Uu=-o0

S for —o< A<,

In this section we consider the problem of determining an
S -vector 4 ,andan SXI filter {a(u)}, so that

(2.5)

u+ Y a(t-u)X (u)
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Which is close to Y (t). Suppose we measure closeness by

the S XS Hermitian matrix

E{[Y(t)— - S at—u)X WY () - g - ia(t—u)X(u)]T} [(2:6)

Theorem 2.1

Consideran (I + S) vector-valued second-order of stability
time series of the form (2.1) with mean (2.2) and

autocovariance functions (2.3). Suppose C,, (U) , €, (U) are
absolutely summable and suppose f, (1), f,, (1) and f (1)
are given by (2.4) and fXX (A) isnonsingular, —00 < A < 0.

Then the, £ ,and a(u) that minimize (2.6) are given by

H=c, - [ ia(u)}cX =c, — A(O)c, , (2.7)
and

a(u) = (27) j:” A(er) Expliua}da | 28)

where

-1
A =, (DT (D)7 (2.9)
the filter {a(u)}is absolutely summable. The minimum
achieved is

LZﬁ[fyy(a)_ f (@) f, (@) f, (@)]de (2.10)

where A(1) is the transfer function of the SXI filter
achieving the indicated minimum . we call A(1), the
complex regression coefficient of Y (t) on X(t) at

frequency A .
Proof

Let A(4),be the transfer function of a(U) which defined
as (2.8). We may write as,

E{[Y(t)—u— > alt- WX @I O - - ia(t—u)xw)r}

—coVY () -~ Yat-u)X W]+ ENY O -~ 3 at-w)X W)]x

x E[Y (t) - u - ia(t—U)X(U)]T

- E{[[Y(t)—u— > alt-wX @)]-ENY ©) - - ia(t—u)xw)]}

x[[v(t)—y— >at-uX W] ~EY©-4- ia(t—u)X(u)]] }+

FEIV(O)- - Yat-u)X )] <EN (1) - - ia(t—u)X(u)]T

U=—0

- ]i[fW (@) = T (@) f (@) f ()]dar +

+ [[A@) (@)= f (@] 5 (@) %

o0

x[A(@) (@) - f, (@] da+[c, - u- Y alt-u)c,]x

U=-0

x[c, —pu— ia(t —u)e, ]’

E{[Y(t)— u-Bde-wx @iy o-u- ia(t—u)xw)r}z

> T[fw (@) -, (&) f (@) Ty (@)ldax

let
c,—p— Y alt-u), =0 ,
2.10
then ( )
p=c,— Y at-u), =c,— Ak, ,
and

A@) (@)~ (@) =0

=  Al)=f, () (@ ,

Using (2.7) and (2.8) the minimum achieved

2z

[[f, @~ (@l (@), (@)]da.

0

3. ASYMPTOTIC PROPERTIES OF EXPANDED
FINITE FOURIER TRANSFORM WITH MISSED
OBSERVATIONS
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let h{'(1) be the discrete expanded finite Fourier

transform which is defined as

h™(4) =[27z§(d ”)(t))zrzfdm(t) w, () expl—iit}, —o<A<oo (3.1)

where
v, t)=B,()Z,(t), a=12,....,mn(r,s) , (3.2)

, X,(t),Y, (t) are the observations on the stability stochastic
processes, B (t)is Bernoulli sequence of random variable
which is stochastically independent of xa(t),Ya(t)which

satisfies

{1 ,if X, (t),Y, (t)are observed ;
B, (t) = (3.3)

0 , otherwise.

Let B, (t) be an independent and identically distributed
random variables with

P[B,() =1=p, .

P[B, () =0]=q, ,
where p, +0, =1.

(3.4)

The data window functiond (" (t) = d (" (%) , te(0,T)is

bounded has bounded variation and vanishes for all
t outside the interval [0, T].

Assumption
Let d(" (t),t € R, a =1,r has bounded variation and vanishes

fort >T —1,t <0 then,

T-1 k
Ga1 ..... a(A) — Z|:Hdg) (t) }exp{— Iﬂt} ,

t=0| j=1

For —o0<A<o0 and a;,...a =12,..r.The following

theorem will give the asymptotic properties of i, (t) which
is defined as (3.2).

Theorem 3.1

Let w,(t)=B,(t)Z,(t),a=12,...,mn(r,s)are missed
observations on the stable stochastic processes,
X,(),Y,(t) ,a=12,....,mn(r,s) and B,(t) is Bernoulli

sequence of random variables which satisfies

equations(3.1),(3.4), Then,

E{w,(t)}=0 , (3.5)

Co (U) C,y (U)

- 3.6
COV{l//al (tl)l '//az (tz)} - pala2 |:ny (U) A(a)CXX (U)A(C{)T :| y

COV{‘/’a1 (t, )(’5;//132 (t, )} =

j faa, (V) xp{ivuldv

-0

A(a)]ifalaz (v) exp{ivu}ldv A(oz)Tfalaz (v) exp{ivu}dvA(a)" 1

[ 1, Wepfvidva@)’ | (37)

= pa]a2

Proof

Since X (t)is a strictly stability series and B, (t) is
independent of Za (t) then (3.5) comes directly.
COV{Wal (tl)’ l//az (tz)} =

=CoviB, ()Z,, (t). B, (Z,, (1)

FamXAm}Famwaqu
— C OV il 1 ’ 2 2
Bal (tl )Ya1 (tl) Ba2 (tz )Ya2 (tz )

~ E{Bal (L)X, (t)B,, ()X, (t,)

Ba1 (tl) X 3y (tl) Ba2 (t2 )Ya2 (t2) .
By W)Y, (W)B, (L)X, (t,)

B, ()Y, (t,)B,, (t,)Y,, (t,)
{ElBa, (t)B,, (t,)cov|X, (). X, t,)] E[B, (t)B, (t,)[cov|X, )Y, (tz)!}

E[B, (t)B,, (t)kovly, (). X, )] E[B, (t)B, (t)lcovly, ()Y, t,)]

{ Pas, COVX,, (1), X, (t,)] Pas, COV[X, (1), 1+ A@)X, (t,)] }
]

P, OVt + A@)X,, (4). X, (t,)] P, CoVu+ A@) X, (1), 11+ A@)X,, (t,)

palazcxalxaz (t -t,) palazcxa1><az , _tz)A(a)T

Paa, A(O‘)CxalxaZ (t,-t,) Paa, A(O’)CxalxaZ (t, —t,)A(@)’

_ Cala2 (tl _tz) Cala2 (tl - tz)A(a)T
~Pasl A@)C, (4 -t,) A@)C,. ( —t)A@)"

from the stability and the independence then,

) G () G (WA@)T
Corly, ), @)= pus, {A(a)c% ) A@),, (u)A(a)T} !

and

COVJU//al (t,), Va, (tZ)}z
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o

‘[ foa, (V) eXp{ivu}av J foa, (v) exp{ivu}dvA(a)"
= pala2 w7 - ©

A(a)j foe, (VOR{VUYAY  A(@) [ T, . (v)eXp{ivu}dvA()" |

Definition: The complex normal distribution: Suppose

X and Y are random vectors in R such that vec[X Y]isa
2K -dimensional normal vector. Then we say that the

complex random vector Z = X +iY has the complex
normal distribution. This distribution can be described with

three parameters: 1 =E(Z),I'=E[(Z - ,u)(z — ;)T 1,
C=E[Z-w)Z-m']

where Z T denotes matrix transpose, and Z denotes
complex conjugate. Here the parameter (£ can be an

arbitrary k -dimensional complex vector, the covariance
matrix | must be Hermitian and non-negative definite; the

relation matrix C should be symmetric. Moreover, matrices

= =T
I"and C are such that the matrix I —C T'*C is also

non-negative definite. Matrices [ and C are related to the
covariance matrices of X and Y via expressions

Vo = EIOX = )X — 12)"] =%Re[r+01,

V,, = EIX = )Y = )" 1= 2 Im[-T +C],

Vye = ELY - 1, XX - ) 1= S Im(r 4],

V,, ELY 41, XY — 1)1 =5 Re[ = C],

and conversely

=V, +V, +iV, -V, ), I[=V, =V +i(V, -V,).
Theorem 3.2

Lety/, (t) is missed observations on the stable stochastic

process [Xa(t) Ya(t)]T, a=1,...,
Bernoulli sequence of random variables which satisfies
equations (3.3) and (3.4), Let h{")(1)be defined as

min( r, s) and B, (t) is

(3.1),and d (" (1) satisfies assumption, then h(” (1) will be

distributed approximately as,

h( (1) =

_[faa WO, (4 —v, 2, —V)dv jfaa WA@)" Q) (4 -v, 2, —V)dv
N7 | O Paa
i J.A(a)fa‘az WQD, (4 -v, 2, —V)dv I A@) fo, Q). (4, -V, 2, —V)dv

(3.8)

where

Qm (4 ~v,4, —v) = 22) 6 @] 2d<”(t )3 dN t,) x

xexp{-i[(4, —V)t, —i(4, —V)t,]} (3.9)

Proof
From equations (3.1)and (3.5) we have,

Efh, ()}=0

Covh(” (4,),h" (4,) =

(3.10)

V2.
- Cov {zﬂz(dm(q))z} S 400 v, (W eol-i4)

=0

T-1

T-1 Y2
{MZ(dé?(tz))z} > APty (t,)exp{-idt, |

t,=0

- 226 (0 TZd”) (t)expl-iAt, zdm t,)explid, }x
x Coviy,, (tl),vxaz ()}

= p.., 27) 60 O] zd O (1) expl-iAt, x

T xx(ti_tz) ny(tl_tZ)
de( @epiiis, ‘{ ¢t -t) A(a)cxx(tl—tz)A(a)T}
and
Covh(2), h0(2,)}= (22) [ (0 Tde Xp{-iAt

T-1
3O eplint,)
1,=0

j s, (V) OOV, —t, )}AVA(e)T

jfa,% (V) expfiv(t, —t,)}dv
x palaZ

A@) j o, (D eXp{iv(t, —t,)}dv  Ad) j f o, (V) @XPEIV(E, 1, )}dVA(@)"
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T-1 T-1
=) 60 O Y d0 )Y dO ) x
t,=0 t,=0

©

[fom v [,
X Py, EXDI-iAL, +idt, +ivt —ivE, ) -

©

Ala) j o, (V)AV A(oz)_[ foo, (VA(@) dv

(V) A()" dv

- RO Tl wZal )

©

[la@d [ f WA &
X Paa, exp{— i[(4 V)t —i(4, —V)t,] o -

Al@) j fo IV A@) j o, (VA(@) dv
V ﬂz}
By b

where

(3.11)

©

T T-1
m=pﬁjnmw%@w1@;&m?2ﬁ§%a§ﬁgw»x
=0 t,=0

xexp{~il(Z —v)t, ~i(Z, —V)t,]jjdv

= pa1azj fala2 (V)Qggz (ﬂ’.L - /12 —V)dV,
R

similarly

B> = Pe, j oo, WA@) QD (4, -

Bs = Pa, j A@)f,, (VQT (4 v, 2, ~v)dv,

A, —V)dv,

and

By = Pa, j A@)f,, VA@) QD) (4 -V, 4, —v)dv

Now from equation (3.10) and (3.11) then equation (3.8)
is obtained which complete the proof.

From equation (3.11) we can drive the following corollary by
putting 4, =4, =4,4,4,,AeR
Corollary 3.1

let K™ (1),a=12,...

. . )
(3.1), then the dispersion of ha (4)

min( r,s),A € R be defined as

satisfies the following property :
Jfaau—nfzg?w)dy [ 1 =A@ Q7 ()dy
R

p“J A@) T (2-7Q0()dy  [A@) fa(i- A QD ()dy |

R R

Dh;"(7) =

(3.12)

and
ol (1) =@ YO em @)
where G(V(1),a=12,..,min(r,s),A€R be defined in

Assumption .

Proof
From equation (3.11), we get
[ f QR (2-v)dv [ fA@) QY (2-v)dv
Dh{"(2) = Py ¢ ? ’
[A@ (0D (2-v)dv j A@) T, MA@ QD (A -v)dv

When

A =4 =A,A€Randa, =a, =a,a=1,...,mn(r,s).

By putting A —V = y ,then formula (3.12) is obtained.

Theorem 3.3

.
/I (S R B the Q(aa) (ﬂ’)v
a=1...,min( r,s) is the kernel that satisfies the following

For any function

properties:
1. TQQ(i)dl:l,a:l,...,min( rss), AeR (3.13)
- -5
2. Lim [aQ = Lim j N(2)dA =0,
,v_m§>0,a:1,...,r(;1in(r,s),/”teR (3.14)
3. Lim j‘Q;Ta)(/l)d/lzl,
4 gzl,...,min(r,s),5>0, AeR. (3.15)
Theorem 3.4

Ifthe spectral density function f_ (X),a=1..,min(r,s),
X € R is bounded continuous at a point X =4,4€Rand

the function Q(aTa)(X), a=1..min(r,s), X eR satisfies

the properties of theorem 3.3, then,
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IT-LrQ Dh;T)(ﬂ) — paa|: faa(j’) faa(ﬂ)A(a)T }

A@)f(2) A@)f.()A@)
,a=1..,min(r,s). (3.16)
Proof
To prove formula (3.16), we must prove that

Lim
T

o0 (1) faWA@™ |
A@) (1) A@)f (DA ||

Dha(lT) (/l) - paa|:

Now, from corollary 3.1 we have,

W) L WA@T ]
A@) (D) A) T (DA@)" ||

thgT) (ﬂ“) - paa|:

Since falaz (y) is continuous at a point y=2A1
,8,,8, =1..,mn(r,s) ,AeR, then we get

] =pf ful2-7) fal-NA@" |
2R A @) fa(A-7) A@) fu(2-2)A@)

QP (y)dy

) fLA@T
A@) Fa(2) A@) fu(D)A@)T

{ ful2= 1) 1u(2) fu(2=NA@) - Tu(DA@) } )
(

B pI A@) fo(2=7) = A@) T,,(4)  Al@) f(1=7)A@)" - Al@) T, (2)Ala)’

o
<l ()dy <& [QF) (n)dy
s

<& [QQ (r)dy

<o J [ Ld=7)  f-nNA@" |
- aa T
SLA@Ta(2-7) Aa)f,(d-7)A@) | Hence, J, <&.Now J, is very small according to any &
£ (D) £ ()A@) is very small, consequently J,=0 Suppose that
aa aa a -
- - Q;Ta) (n)dy < f.(4) a=1..,mn(r,s),AeRis bounded by a constant M,
Al@)f. (1) Ale)f,.(A)A(@)
then
-5
<p f fal2-7) <2M [QQ) (y)dy —=—0,
® A((Z) faa(ﬂ/ ]/) A((Z) faa(j’ 7)A —©
|: f () (Z) A( ) according to property (3.14). similarly J, ———0, therefore,
aa o (T) (
y)dy + foa(A) faa () A@)
Ala)f. (1 Aaf A)A T} Dh{V (1) - aa aa ¢ 0-
( ) aa( ) ( ) aa( ) ( ) a (A) = Paa Alc) faa(ﬂ) Aa) ;. (l)A(a)T —=
+p j [ fal2-7) faal A which completes the proof of the theorem.
CLA@ L (2-7) A LG
Lemma 3.1
_{ faa(4) (A)A(a) :| (T)(j/)d}/+ If the data window functionde(lT) (t)teR, a=]j is
Ala) f (l) Ala) faa DA ) bounded and has bounded variations and equal zero outside
the interval[0,T —1] ; then
k f (1- f (A-7)A@)
n pan' aa( }/) aa( 7/) (0{) - T d(T) T d(T) g
N At 0-n A@1.0-1)A@) 3400 - I (udu, (3.17)
t=0
. faa (/l) faa (/1) A(a)T (T) (]/)d}/ Where,
A@) Fa (1) A@) Tu (D A@)
Zd”)(t)___)jdm(u)du a=1r,T=12,.(3.18)
=J,+J,+J;. =0
Lemma 3.2
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Suppose d;T) (t)teR, a=1r isbounded by a constant

L and satisfying the Lipschitz condition,

T-1
d{ (t+u)-d (1) -

u=0
T-1
-2 dP®)d () expl-iati<elul, (3.19)
t=0

then,

71
Y dPu+t)d D (t) expl-idtj-<Leu], (3.20)
t=0

for all constant &, U=[—(T —=1),(T —=1)]and A €[-7, 7].
Lemma 3.3

For all A,,4, €e[-x, 7], (4, —4,) # (mod 27) and
d{”7(t), t e R, a=1,...,min( r,s) isbounded bya constant

L and satisfying Lipschitz condition (3.19), then,

Covih (), h (2,)}< L x

Z”J S0 (a0 1))

t,t,=0

T-1 T-1
x {m T ZT:D Co, W]+ 2 1c (u)[ul+ 1]}, (321)

=T+ =T+
forall &,,a, =1,...,mn(r,s).
Theorem 3.5

For all A, A, e[-x,7x], (4, —4,) = (mod 27) and
d{"(t),t e R, a=1,..,min(r,s)is bounded and

pA I +1]‘Ca1az (U)‘ < oo, (3.22)
then
lim COV{h;T) (4,), (" (/12)}= 0, (3.23)

forall a;,a, =1,...,min( r,s).

Proof

The proof comes directly from Lemma 3.3 and Lemma 3.1.

4.APPLICATIONS

We will apply our theoretical study in two cases in climate
and economy as in the following sections.

4.1.Studying the temperature and solar radiation

The data manipulated in this research make up a monthly
chronic series that represents the average of the monthly
temperature and solar radiation in Tripoli in Libya. The data
is extracted from the meteorological centre of Tripolj, for the
period from January 2005 to December 2013.

4.1.1.Studying the temperature

In this study we will comparison between our results,
model of strictly stability time series (temperature) with
some missing observations and the classical results, where
all observations are available.

Letd,(t) =B,()X,() ,a=12,......,r ,where
X, (t) .(t=0,£l....)be a strictly stability r-vector valued
time seriesand B, (t) is Bernoulli sequence of independent
random variable of X a (t) which satisfies equations (3.3)

and (3.4), we suppose that the data X, (t),t=(12,.....,T] isthe
average of the monthly temperature, where all observations
areavailable, B =1, @ (t) = X (t), whichis the classical
case suppose that there is some missing observations in a
random way, i.e., B = 0, table 4.1.1 shows the comparison

of these results with and without missed observations.

Table-4.1.1: The comparison of the results with and
without missed observations

Series without missed observations Series with missed observations

Time Series Plot of temperature Time Series Plot of Testi

EER ]
Index

10
1 12 24 3 48 e 72 84 9% 108 120
Index

The average monthly temperatures The average monthly temperatures
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Autocorrelation Function for Def12Ln(zt)
(with 5% significance limits for the autocorrelations)

Autocorrelation Function for def122**t
(with 5% significance limits for the atocorrelations)

2 H R o o
02
[T [IATTH

Autocorrelation

5 — '
P L

Autocorrelation

T
F L L

1 5 o {5 20 25 30 35 4 45 50

I 5 1 15 20 25 30 35 4 4 %0
Lag

ACF of the seasonal difference

ACF of the seasonal difference

Partial Autocorrelation Function for Def12Ln(Zt)
(with 5% signifcance limit for the partal autocorrelations)

Partial Autocorrelation

T 5 0 15 % 2 % 3% 4 & 0

tag P

Partial rrelation Function for def12Z**t
(with 5% significance imits for the partial autocorrelations)

IS L1
0z J,'Jlll'+fi LI o | I L b

Partial Autocorrelation

T 5 1 15 2 25 30 3 4 4 s
Lag

ACF of the seasonal difference

PACF of the seasonal difference

ARIMA Model: Temperature
ARIMA(2,0,0) x (0,1,1)12

Final Estimates of Parameters

Type  Coef SE Coef T P
AR 1 0.3446 0.1036 333 0.001
AR 2 0.1522 0.1031 148 0.143

SMA 12 0.8445 0.0839 10.07 0.000

Constant 0.002439 0.002641 0.92 0.358

Differencing: 0 regular, 1 seasonal of order
12

Number of observations: Original series
108, after differencing 96

Residuals: SS = 1.03233 (back forecasts
excluded)

MS=0.01122 DF=92

Modified Box-Pierce (Ljung-Box) Chi-
Square statistic

Lag 12 24 36 48
Chi-Square  15.1 250 364 414
DF 8 20 32 44

P-Value 0.057  0.203 0.269 0.585

ARIMA Model: Temperature
ARIMA(2,0,0) x (0,1,2)12

Final Estimates of Parameters

Type  Coef  SE Coef T P
AR 1 0.5700 0.1058 539 0.000
AR 2 -0.0155 0.1059 -0.15 0.884
SMA12 1.5643 0.1035 15.12 0.000
SMA 24 -0.6502 0.1014 -6.41 0.000
Constant 0.0011289 0.000935 1.21 0.230

Differencing: 0 regular, 1 seasonal of
order 12

Number of observations: Original series
108, after differencing 96

Residuals: SS =0.775840 (back forecasts
excluded)

MS = 0.008526 DF=91

Modified Box-Pierce (Ljung-Box) Chi-
Square statistic

Lag 12 24 36 48
Chi-Square 10.7 20.8 44.1 534
DF 7 19 31 43

P-Value 0.153 035 0.059 0.133

Let ¢,(t)=B,(t)Y,(t) .a=12...,s, whereY,(t),
t=0,11, ), be a strictly stability s-vector valued time series

and B, (t) is Bernoulli sequence of random variable which is
stochastically independent of Ya (t) which satisfies equations

(3.3) and (3.4), we suppose that thedata Y, (t), t=(12,.,T] is
the average of the monthly temperature, where all
observations are available,B=1, ¢,(t)=Y,(t) which is the
classical case, suppose that there is some missing
observations in a random way, i.e., B=0, table 4.1.2 shows

the comparison of these results with and without missed
observations.

Table-4.1.2: The comparison of the results with and without
missed observations of the solar radiation

Series without missed observations Series with missed observations

‘Time Series Plot of solar(Xt) Time Series Plot of Testi

T 0 2 3 @ s 6 7 & %

= T & 22 3% 4 e 72 8 % 108 10

Index

The average monthly solar radiation The average monthly solar radiation
Autocorrelation Function for Def12LnXt Autocorrelation Function for def12X**t
(with 5% signiicance imits for the autocorrlations) (with 5% significance imis for the autocorrelations)
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4.1.2.Studying the solar radiation

In this study we will comparison between our results,
model of strictly stability time series (Solar Radiation) with
some missing observations and the classical results, where

all observations are available.

ARIMA Model: solar radiation without | ARIMA Model: solar radiation with

missed observations missed observations
ARIMA(3,0,0) x (0,1,2)12 ARIMA(3,0,0) x (0,1,2)12

Final Estimates of Parameters Final Estimates of Parameters

Type Coef SECoef T P | Type Coef SECoef T P

AR 1 06443 0.035 622 0000 | AR 1 0.5507 0.0974 5.65 0.000

AR 2 0.1997 0.1218 1.64 0.105 AR 2 04379 0.1044 4.19 0.000
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AR 3 -0.3299 0.1004 -3.29 0.001

SMA 12 0.9057 0.1119 8.09 0.000

SMA 24 -0.0570 0.1637 -0.35 0.729

AR 3 -0.4197 0.0970 -4.33 0.000

SMA 12 1.0427 0.1089 9.58 0.000

SMA 24 -0.2015 0.1577 -1.28 0.205

temperature 12.685 1.055 12.02 0.000

$=60.2159 R-Sq=57.7% R-Sq(adj) =
57.3%

Analysis of Variance

Test. 12.726 1.074 11.84 0.000

S=585263 R-Sq=57.0% R-Sq(adj) =
56.6%

Analysis of Variance

Constant -0.1524 0.8091 -0.19 0.851 Constant -0.0518 0.7478 -0.07 0.945

Differencing: 0 regular, 1 seasonal of
order 12

Differencing: 0 regular, 1 seasonal of
order 12

Number of observations: Original series
108, after differencing 96

Number of observations: Original series
108, after differencing 96

Residuals: SS= 113197 (back forecasts
excluded)

Residuals: SS= 122927 (back forecasts
excluded)

MS= 1258 DF=90 MS= 1366 DF=90
Modified Box-Pierce (Ljung-Box) Chi-
Square statistic

Modified Box-Pierce (Ljung-Box) Chi-
Square statistic

Lag 12 24 36 48 Lag 12 24 36 48
Chi-Square 10.0 16.0 35.1 44.7 | Chi-Square 8.5 213 411 512
DF 6 18 30 42 DF 6 18 30 42
P-Value 0.123 0.589 0.240 0.358

P-Value 0.206 0.266 0.085 0.15

4.1.3. Studying The Regression Between Solar
Radiation And Temperature

In this section we adjust the regression model which
represents the relationship between Monthly rate of solar
radiation in watt /m”"2 rate and the average monthly
temperature in the period from 2005 to 2013.

In this study we will comparison between our results with
some missing observations and the classical results where all
observations are available.

Letz(t)=[X(t) Y] where X(t) is the series of average of
temperature and Y(t) is the series of the average of solar
radiation, first we consider that the observations are

availableP =1 w/(t) = B(t)Z(t) = pZ(t) = Z(t), then consider that

there are some missing of observations randomly, P =0. We
used SPSSMINITAB to investigate our results which is
shown in table 4.1.3

Table - 4.1.3: The comparison of the results with and without
missed observations of the regression analysis

Source DF SS MS F P Source DF SS MS F P

Regression 1 523989 523989 144.5 0.00 Regression 1480536 480536 140.3 0.00
Residual Error 106 384352 3626 Residual Error 106 363085 3425

Total 107 908341 Total 107 843621

Probability Plot of RESI1
Normal

Probability Plot of RESI2
Normal
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Normal-plot of standardized Residuals Normal-plot of standardized Residuals

Without missed observations With missed observations

The regression equation is The regression equation is

solar radiation =-10.4 + 12.7 temperature Solar = - 9.9 + 12.7 Temperature

Predictor  Coef SE Coef T P Predictor Coef SECoef T P

Constant  -10.42 22.36  -0.47 0.642 Constant -9.94 2271 -0.44 0.663

4.1.4.Conclusion

1. Tables 4.1.1 and 4.1.2 shows the study of time
series with missed observations and the original
time series and we investigated that they have the
same results.

2. Table 4.1.3 shows the study of regression model
between Monthly average of solar radiation and
average monthly temperature with some missed
observations which had the same results of the
study of the classical regression model.

4.2. Studying the Export and the Gross domestic
product

The data manipulated in this research make up chronic
series that represents the Export and the Gross domestic
product. The data is extracted from the Central Bank of Libya
for the period from 1970 to 2012.

4.2.1. Studying the Export

In this study we will comparison between our results,
model of strictly stability time series (Export) with some
missing observations and the classical results, where all
observations are available.

Let O, (t) =B, (t)X,(t) ,a=12.....r, where X,(t),(t=041L...) be

a strictly stability r-vector valued time series and B, (t)is
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Bernoulli sequence of independent random variable of

X a (t) which satisfies equations (3.3) and (3.4), we suppose

observations are available,B=1 ®,(t)=X,(t), which is the

classical case suppose that there is some missing

Residuals: SS= 2806388520 (back
forecasts excluded)

MS = 73852329 DF=38

Modified Box-Pierce (Ljung-Box) Chi-
Square statistic

Residuals: SS= 3338821601 (back
forecasts excluded)
MS= 87863726 DF=38

Modified Box-Pierce (Ljung-Box) Chi-
Square statistic

observations in a random way, i.e,, B =0, table 4.2.1 shows

the comparison of these results with and without missed

observations.

Table -4.2.1: The comparison of the results with and

without missed observations

Lag 12 24 36 48 Lag 12 24 36 48
Chi-Square 12.8 13.3 14.7 Chi-Square 7.6 7.8 8.1
DF 9 21 33 DF 9 21 33

P-Value 0.173 0.899  0.998 P-Value 0.570 0.996 1.000

Series without missed observations

Series with missed observations

Time Series Plot of Export X(t)

Time Series Plot of XA(t)
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4.2.2. Studying the Gross domestic product

In this study we will comparison between our results,
model of strictly stability time series (Gross domestic
product) with some missing observations and the classical
results, where all observations are available.

Let ¢,(t) =B,(1)Y,(t) ,a=12,....,S, where Y,(t)(t=04..) be a
strictly stability s-vector valued time series and B, (t)is

Bernoulli sequence of random variable which is

stochastically independent ona (t) which satisfies equations
(3.3)and (3.4), we suppose thatthedata Y, (t), t = (1.2,....,T]
is the Gross domestic product, where all observations are
available, B =1 ¢,(t) =Y, (t), which is the classical case,

suppose that there is some missing observations in arandom
way, i.e, B=0, table 4.2.2 shows the comparison of these

results with and without missed observations.

Table-4.2.2 The comparison of the results with and
without missed observations of the Gross domestic product

PACF of the second difference

PACF of the second difference

Series without missed observations Series with missed observations

ARIMA Model: Export
ARIMA(1,2,1)

Final Estimates of Parameters
Type  Coef SE Coef T P

AR1 -1.1606 0.1112 -10.44 0.000
MA1 0.0554 0.2152 0.26 0.798
Constant -197 1271 -0.15 0.878

Differencing: 2 regular differences

Number of observations: Original series
43, after differencing41

ARIMA Model: Export
ARIMA(1,2,1)

Final Estimates of Parameters
Type Coef SECoef T P

AR 1 -1.1559 0.1081 -10.69 0.000
MA 1 -0.0757 0.2246 -0.34 0.738
Constant 776 1596 049  0.630

Differencing: 2 regular differences

Number of observations: Original series
43, after differencing 41

Time Series Plot of Gross domestic product Y(t)
120000 120000

Time Series Plot of YA(t)
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Partial Autocorrelation Function for Y (t-2)
(with 5% signficance limits or the partial autocorrelatons)

Partial Autocorrelation Function for YA(t-2)
(with 5% significance imits for the partial autocorrelations)
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PACF of the second difference

ARIMA Model: Gross domestic product
without missed observations

ARIMA(L,2,)

Final Estimates of Parameters

Type  Coef SECoef T P

AR1 -1.1536 0.1637 -7.05 0.000
MA1 0.2757 0.1961 141 0.168
Constant 1 1429 0.00 0.999

Differencing: 2 regular differences

Number of observations: Original series
43, after differencing 41

Residuals: SS= 5983868951 (back
forecasts excluded)

MS = 157470236 DF =38

Modified Box-Pierce (Ljung-Box) Chi-
Square statistic

Lag 12 24 36 48
Chi-Square 7.3 7.6 8.6
DF 9 21 33
P-Value 0.608

0.996 1.000

ARIMA Model: Gross domestic product
without missed observations

ARIMA(L,2,1)

Final Estimates of Parameters

Type Coef SE Coef T P
AR1 -1.1266 0.1694 -6.65 0.000
MA1 0.1373 0.2419 057 0574

Constant 486 1725 0.28 0.780
Differencing: 2 regular differences

Number of observations: Original series
43, after differencing 41

Residuals: SS= 6027685315 (back
forecasts excluded)

MS = 158623298 DF =38

Modified Box-Pierce (Ljung-Box) Chi-
Square statistic

Lag 12 24 36 48
Chi-Square 8.3 8.5 8.9
DF 9 21 33
P-Value

0.509 0.993 1.000

available P =1, y(t)=B(t)Z(t) = pZ(t) = Z(t), then consider that

there are some missing of observations randomly, P =0. We
used SPSS,MINITAB to investigate our results which is

shown in table 4.2.3

Table-4.2.3: The comparison of the results with and without
missed observations of the regression analysis

Without missed observations

With missed observations

Regression Analysis: Y(t) versus X(t)
The regression equation is

Y(t) = 4029 + 1.52 Export X(t)
Predictor Coef  SE Coef T P
Constant 4029.2 724.2 5.56 0.000
Export X(t) 1.52488 0.02872 53.10 0.000

S=400451 R-Sq=98.6% R-Sq(adj) =
98.5%

Analysis of Variance

Source DF SS MS

Regression 1 45207962941 45207962941

2819.14 0.00

Residual Error 41 657479494 16036085

Total 42 45865442435

Regression Analysis: Y”(t) versus X*(t)
The regression equation is

YA(t) =4013 + 1.55 X*(t)

SE Coef T P

Predictor Coef

Constant 4012.5 807.0 4.97 0.000
Export X*(t) 1.5544 0.03273 47.49 0.000

S=4449.61 R-Sq=98.2% R-Sq(adj) =
98.2%

Analysis of Variance

Source DF SS MS

Regression 1 44646419639 44646419639

225498 0.00

Residual Error 41 811760984 19799048

Total 42 45458180623

4.2.3. Studying the regression between Gross domestic

product and Export

In this section we adjust the regression model which
represents the relationship between the Gross domestic
product and Exportin the period from 1970 to 2012 million

Libyan dinars.

In this study we will comparison between our results
with some missing observations and the classical results

where all observations are available.
Let z@) =[x (t) Y@®)] where X(t)is the series of the

Exportaverage and Y (t)is the series of the Gross domestic

product, first we consider that the observations are

Probability Plot of RESI2
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Probability Plot of RESI3
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4.2.4. Conclusion

1. Tables 4.2.1 and 4.2.2 shows the study of time
series with missed observations and the original

time series and we investigated that they have the

same results.

2. Table 4.2.3 shows the study of regression models
between Gross domestic product and Export with
some missed observations which had the same

results of the study of the classical regression

models.
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