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Abstract – In this paper, we study the existence of Surface 
Soliton at the interface between a semidiscrete one dimension 
Kerr-nonlinear system and a continuous medium in form of 
optical waveguide. We investigate that a power threshold is 
required for the existence of surface. Below which no 
excitation found. Power threshold is calculated numerically 
and analytically with the function of propagation constant 
(keeping fix value of coupling constant). We also found that 
increasing the strength of coupling constant between the 
waveguides increases the light intensity in the excited 
waveguide resulting in a smoother soliton.  
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1. INTRODUCTION AND REVIEW OF SOME 
PREVIOUS WORK  
 

The presence of an interface between different 
materials can profoundly affect the evolution of nonlinear 
excitations. Such interface can support stationary surface 
waves. These were encountered in various areas of physics 
including solid-state physics [1], near surface optics [2], 
plasmas [3], and acoustics [4]. In nonlinear optics, surface 
waves were under active consideration since 1980. The 
progress in their experimental observation was severely 
limited because of unrealistically high power levels required 
for surface wave excitation at the interfaces of natural 
materials. However, shallow refractive index modulations 
accessible in a technologically fabricated waveguide array 
(or lattice) may facilitate the formation of surface waves at 
moderate power levels at the edge of semi-infinite arrays as 
was suggested in Ref. [5]. This has led to the observation of 
one-dimensional surface solitons in arrays with focusing 
nonlinearity [6]. Defocusing lattice interfaces are also 
capable to support surface gap solitons [7, 8 & 9]. Surface 
lattice solitons may exist not only in cubic and saturable 
materials, but also in quadratic [10] and nonlocal [11] media, 
as well as at the interfaces of complex arrays [12]. 
 

The femtosecond laser direct writing technique [13] 
allows fabrication of waveguide arrays along arbitrary paths 
[14] and with various topologies, such as square [15], 
hexagonal [16] and circular [17], where multiple waveguides 

can be specifically excited [18]. Since the nonlinearity of the 
waveguides is affected by the writing parameters [19], it is 
possible to tune it for specific purposes, such as excitation of 
1D and 2D discrete solitons [20 & 21].  
 
Surface solitons have also been predicted at the interface 
between two different semi-infinite waveguide arrays [22], 
as well as at the boundaries of two-dimensional (2D) 
nonlinear lattices [23, 24, 25, 26 & 27]. It has been shown 
that surface solitons of the vectorial [28 & 29] and vertical 
[6.77] types, as well as surface kinks [30], can exist too. 
 

The existence of surface Soliton required a power 
threshold below which no excitation found. In my present 
work the value of power threshold is calculated numerically 
and analytically with the function of propagation constant 
(keeping fix value of coupling constant). I also found that 
increasing the strength of coupling constant C between the 
waveguides increases the light intensity in the excited 
waveguide resulting in a smoother Soliton. 

 

2. PROBLEM FORMULATION 
 

To analyze the problem of nonlinear surface waves, 
consider a semi-infinite Kerr-nonlinear lattice shown 
schematically in Figure 1. The discrete nonlinear 
schrodinger equation (DNLSE) that describes the evolution 
of complex modal field amplitudes for this system can be 
written as 

20
1 0 0 0

d
i C

dz


                                (1) 

2

1 1( ) 0n
n n n n

d
i C

dz


                         (2) 

In this model of the array of optical waveguides, the 
evolution variable z is the distance of the propagation of 
electromagnetic signals along the waveguides, and β is the 
coefficient of the on-site nonlinearity, the self focusing and 
self-defocusing nonlinearities corresponding, respectively, to 
β > 0 and β < 0. Equation (1) governs the evolution of the 
field at the edge of the array, which corresponds to site n = 0, 
and Eq. (2) applies at every other site, with n ≥ 1. The actual 
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electric field in the optical wave is expressed in terms of 

scaled amplitudes 
n  as follows 
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where C is the inter-site coupling coefficient in physical units 
(in Eqs. (1) and (2)), λ0 is the free-space wavelength, η0 is the 
free-space impedance, 

2n̂ is the nonlinear Kerr coefficient, 

and n0 is the linear refractive index of the waveguides 
material. 

 

Figure 1: The schematic of a semi-infinite waveguide 
array. 

Of course, equations (1) and (2) are valid only for the first 
band in the coupled mode approximation which is adequate 
for this purpose. The ridges formed in the upper cladding 
lead to an effective refractive index to the right of the 
boundary larger than that to the left. Hence, the fields 
associated with the channel waveguides exhibit a higher 
effective refractive index than that experienced by any 
propagating modes in the 1D slab waveguides, i.e. the 
propagation wave vectors for the array region are larger 
than those of the slab waveguide. As a result, at the 
boundary, there is no coupling between the slab waveguide 
modes and the array modes, and the boundary channel field 
decays exponentially with distance into the slab region with 
the decay constant approximately that for a single isolated 
channel. However, this boundary channel does couple via its 
evanescent field to its nearest neighbor channel. 

3. ANALYTICAL SETUP AND RESULTS 
 

T Discrete nonlinear surface waves in a semi-infinite 
lattice can be numerically found using relaxation and 
perturbation methods. Let the stationary solution to the 
Equation (2) of the following form  

exp( )n nu i Ct  
                                   

(4) 

where is the corresponding propagation constant, and all 
amplitudes un are assumed to be positive, which corresponds 
to an in-phase solution. In the system under consideration, 
solitons can be found with values of the propagation 

constant falling into the semi-infinite gap, 2  , where 
localized solutions are possible in principle. 
 
The family of soliton solutions, found numerically by means 
of the relaxation method. Total power P carried by the 
soliton solution peaked at the boundary channel can be 
written as follow 

2

0

nP 


                                               (5) 

above power threshold , the 1D surface solitons are strongly 
localized, and may be approximated by a simple ansatz  
 

exp( )n A np i Ct                                  (6) 

 
where the amplitude is given by 
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and 
 

2lnp A                                                 (8) 

 
Equation (2) can be rewrite as follow 
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By putting the value of equation (4) in equation (9), we get 
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where 
2 1 1 2n n n n        is the discrete Laplacian in 

1-D. 

To examine the stability of n , we introduce the 

linearization ansatz 

n n nZ                                        (11) 

where 1  , and substitute this in to equation (9), it yield 

the following linearization equation at ( )O  : 
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i    , and linearizing in  , we find  

          
n n

n n

N
 

 

   
   

   
                            (13) 

where 



          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395 -0056 

               Volume: 04 Issue: 04 | Apr -2017                     www.irjet.net                                                                p-ISSN: 2395-0072 

 

© 2017, IRJET       |       Impact Factor value: 5.181       |       ISO 9001:2008 Certified Journal       |      Page 1096 
 

     

0

0

M
N

M





 
  

                                     
(14)

 

and  

     2

2 2nM C C C                  (15) 
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By the eigenvalues of N the stability of  
n  

is determined. 

Let the eigenvalues of N be denoted by id, which implies that 

n  is stable if the Im(d) = 0. Because the equation (14) is 

linear, we can eliminate one of the ‘eigenvectors’, for 

instant
n , from which we obtain following eigenvalue 

problem 
 

2( ) ( ) d n nM C M C                         (17) 

 
 
4. STABILITY OF SURFACE SOLITON AS A FUNCTION 
OF POWER 
 

Using equations (5, 6, 7 & 8), we plot a curve 
between power P verses propagation constant   for 
different values of C. P   curve exhibits a minimum which, 
in turn, implies that discrete nonlinear surface waves can 
exist only above a certain power threshold. Below the power 
threshold no surface waves can be supported.  
 
Below power threshold the eigenvalues of equation (17) 
bifurcates from the edge of continuous spectrum and give 
rise to an additional unstable eigenvalue pair, with 

Im(d) 0 . At threshold eigenvalues of equation (17) just 

collide with continuous spectrum. And above power 
threshold eigenvalues cross the continuous spectrum such 
that Im(d) = 0. 
 

Linear stability analysis reveals that the surface 
wave solutions are only stable to the right of the minimum of  
P  curve, i.e. in the region where 0dP d  , in agreement 

with the well-known Vakhitov-Kolokolov criterion for 
continuous media [31 & 32]. In the stable branch, the 
localization of soliton solutions increases with soliton power 
and the evanescent field decay into the continuous low index 
region.  
 

In figure (2(a)), we plot power P as a function of 
propagation constant , taking coupling constant C = 1. We 
clearly found that the minimum in the P   curve occurs at 

2.31   and the threshold power corresponds to this value 

is 3.495. Figure (2(b), (c) and (d)) verify the value of   also. 
According to figure (2(b)), when we take 2.11  , the 

eigenvalues of equation (17) bifurcates from the edge of 

continuous spectrum and give rise to an additional unstable 
eigenvalue pair, with Im(d) 0 . So no soliton solution 

found. For  2.31   eigenvalues of equation (17) just 

collide with continuous spectrum. For 2.40   eigenvalues 

cross the continuous spectrum such that  Im(d) = 0, then we 
found the strong localized solution in form of surface soliton. 

 

 
Figure 2: (a) Total power (P
constant for an in-phase surface soliton solution peaked at 
n=0 and C=1. (b),(c) and (d) The structure of eigenvalue at 

respectively. 

5. DEPENDENCY OF TOTAL POER P ON 
PROPAGATION CONSTANT  FOR VARIOUS VALUES 
OF COUPLING CONSTANATS 
 

As we solve the equations (5, 6, 7 and 8) 
numerically, then we found that the value of threshold 
power P is increased, if the value of coupling constant C is 
increased. The dependency of total power P on propagation 

onstants is shown 
in figure (3). 
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Figure 3: Total power (P) versus propagation () 
constant curves for various values of coupling constant 

 
6. DEPENDENCY OF THRESHOLD POER P ON 
COUPLING CONSTANAT 
 

Threshold power (Pth) versus coupling constant (C) 
curve shows that if we increase the value of C then the value 
of Pth is also increased. Which is shown in figure (4). In this 
case propagation constant  is taken 2.31 

 

Figure 4:  Threshold power (Pth) versus coupling constant 
(C) curve. 

 

6. EFFECT OF COUPLING CONSTAT ON THE 
INTENSITY AND SHAPE OF SOLITON 
 

We solve equation (10) using Newton-Raphson 
method for 100 iterations using software MATLAB. We 
investigate the effect of coupling constant on the intensity 
and shape of surface Soliton.  
 
Let us set the constants  = 2.5,= 1, n = 6 waveguides and 
a light beam of intensity 1 is injected in to the zeroth 
waveguide. 
 

Figures (5) to (18) are plot of intensity of light through 6 
waveguides. The intensity of waveguide is given by 2

n , 

where 
n  is the wave function. It is clear from these figures 

that if the value of C is increased then the intensity of surface 
soliton is also increased, but shape of soliton became 
smoother. 
 

  
Figure 5:  Intensity curve of surface soliton for C = 0 

 
Figure 6:  Intensity curve of surface soliton for C = 0.1 

 
 

Figure 7:  Intensity curve of surface soliton for C = 0.2 



          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395 -0056 

               Volume: 04 Issue: 04 | Apr -2017                     www.irjet.net                                                                p-ISSN: 2395-0072 

 

© 2017, IRJET       |       Impact Factor value: 5.181       |       ISO 9001:2008 Certified Journal       |      Page 1098 
 

 
Figure 8:  Intensity curve of surface soliton for C = 0.3 

 
Figure 9:  Intensity curve of surface soliton for C = 0.4 

 

 
Figure 10:  Intensity curve of surface soliton for C = 0.5 

 
Figure 11:  Intensity curve of surface soliton for C = 0.6 

 
Figure 12:  Intensity curve of surface soliton for C = 0.7 

   

 
Figure 13:  Intensity curve of surface soliton for C = 0.8 
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Figure 14:  Intensity curve of surface soliton for C = 0.9 

 
Figure 15:  Intensity curve of surface soliton for C = 1 

 
Figure 16:  Intensity curve of surface soliton for C = 1.1 

 

 
Figure 17:  Intensity curve of surface soliton for C = 1.2 

 
Figure 18:  Intensity curve of surface soliton for C = 1.3 

 

6. CONCLUSIONS 
 

In this investigation, I have studied the existence of 
surface Soliton at the interface between a semidiscrete one-
dimensional Kerr-nonlinear system and a continuous 
medium (slab waveguide). I found that discrete nonlinear 
surface waves can exist only above a certain power 
threshold. Below the power threshold no surface waves can 
be supported. 

The curve between power P verses propagation 

constant   for different values of C exhibits a minimum 
which is called power threshold. Below power threshold the 
eigenvalues bifurcate from the edge of continuous spectrum 
and give rise to an additional unstable eigenvalue pair that 
means no surface waves can exist. At threshold eigenvalues 
just collide with continuous spectrum. And above power 
threshold eigenvalues cross the continuous spectrum, that 
means surface soliton can exist on the interface. 
Linear stability analysis reveals that the surface wave 
solutions are only stable to the right of the minimum of 
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P  curve, i.e. in the region where 0dP d  . In the stable 

branch, the localization of soliton solutions increases with 
soliton power and the evanescent field decay into the 
continuous low index region.  
I also found that the value of threshold power P is increased, 
if the value of coupling constant C is increased. In threshold 
power (Pth) versus coupling constant (C) curve, I found that if 
the value of C is increase then the then the value of Pth is also 
increased.  
More interestingly, I observed that increasing the strength of 
the coupling C between the waveguides increases the light 
intensity in the excited waveguide resulting in a smoother 
soliton .  
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