
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 03 | Mar -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2016

CROSS SITE SCRIPTING ATTACKS AND PREVENTIVE MEASURES

Dr. G. Rama Koteswara Rao1, K.V.J.S. Sree Ram2, M. Akhil Kumar3, R. Supritha4, S. Ashfaq Reza5

1Professor, 2,3,4,5IV/IV B.Tech
Dept. of Information Technology

VELAGAPUDI RAMAKRISHNA SIDDHARTHA ENGINEERING COLLEGE, Kanuru, A.P, India

---***---
Abstract - Cross site scripting is an injection type attack
where an attacker injects malicious scripts into the web pages.
These scripts will be inserted into the pages through search
fields, comment fields, guest books etc. The core intention of this
attack is to steal the sensitive data of the other users who are
visiting the same website. This is one of the most prevalent
vulnerabilities in web applications and also a browser exploit
that takes advantages of malicious JavaScript. Input
validations and Code filtering are the most important areas
where most of the executions of malicious script can be blocked.

Keywords: Cross site scripting, vulnerability, attacks,
input validation, malicious script, code filtering.

1. INTRODUCTION

Web applications are generally classified into two types;
they are static web applications and dynamic web
applications. Static web applications are those which does
not interact with server (or database) and display the static
content to the users. Dynamic web applications are those
which interact with the server and satisfy the request of the
client, for example, a sample login page which verifies the
username and password of the user by interacting with the
database in which the user credentials are stored [1].

Cross site scripting attacks are the type of attacks which
enables the attackers to steal the client side sensitive
information like cookies etc.. These kind of attacks are
generally done by injecting the client side vulnerable scripts
into the areas which communicate with the servers or the
databases like search fields, comment box etc.. By stealing
user sensitive information attackers can bypass the access
controls like same origin policy [2].

1.1 TYPES OF CROSS SITE SCRIPTING ATTACKS

There are mainly three types of cross site scripting attacks.
They are:

i. Non persistent Attacks: It is the most common
type of web vulnerability and is also termed as
reflected XSS attack or type 1 XSS because the
attack is carried out in a single request/response
cycle [3]. This attack is done mostly in HTTP query
parameters given by the users and is used by scripts

on the server side and display the results without
sanitizing the query[4]. These attacks are easy to
identify and attacker initially checks whether a
particular web application is vulnerable or not by
performing these attacks. These attacks are not so
devastating since these do not show impact on the
server.

ii. Persistent Attacks: It is the more dangerous type
of XSS attack and is commonly termed as stored XSS
attack or type 2 XSS because the attack is carried
out in two requests one for injecting the malicious
code and store it in the web server and the other for
the users(victims) to load the page which is
malicious[5]. In this attack, the attacker stores the
malicious script on the server side permanently and
when the users unknowingly or without proper
knowledge make the script active he/she will be a
victim of the attack[4].

iii. DOM based Attacks: In these attacks, the
vulnerability appears in the document object model.
In type 1 and type 2 XSS, the dangerous payloads
are in the response page but in this type of attack,
the dangerous payload is not in the response page
and the source code of the HTML page is similar to
the response page. These attacks are done by the
use of document.write() and other such similar
functions[6].

2. LITERATURE SURVEY
In 2012, Takeshi Matsuda worked on “Cross Site

Scripting Attacks Detection Algorithm Based on the
Appearance Position of Characters” [7]. In order to prevent
XSS attacks, they proposed a new detection algorithm which
works on extracting an attack feature considering the
appearance position and symbol frequency. The
disadvantage of this approach is it requires learning of
detection threshold and since this algorithm works best after
testing against training test samples we cannot completely
ensure the web application is secured.
 In 2013, Michelle E Ruse et al. proposed a two-phase
technique to detect XSS vulnerabilities and prevent XSS
attacks[8]. In the initial phase, the web application is
translated into a language for which recently developed
concolic testing tools are available which also identifies
input and output variables that are helpful in generating test
cases of determining input/output dependencies in the
application. In the second phase, monitors are used to check

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 03 | Mar -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2017

the vulnerabilities at the run time. The disadvantages are
this technique is useful for the web applications developed in
java and doesn’t work well for those applications in other
programing languages like PHP etc..

 In 2014, Guowei Dong, YanZhang, XinWang, Peng
Wang, Liangkun Liu worked on “Detecting Cross Site
Scripting Vulnerabilities Introduced by HTML5” [9]. They
have done a systematic analysis on tools and attributes and
identified XSS attack vectors related to HTML5. A XSS
repository is constructed and a dynamic tool is implemented
depending on these vectors. The disadvantage of this is:
Since it is based on analysis, although all the Webmail
systems have a respective XSS vulnerability filtering
mechanism, if a new XSS vector appears this mechanism
doesn’t respond

 In 2015, Shashank Gupta and B.B.Gupta conducted a
survey on the various journals on “Cross Site Scripting
attacks and Defense mechanism” [10]. They have analyzed
the major concerns for web applications and Internet-based
services which are persistent in several web applications
and highlighted some of the serious vulnerabilities found in
the modern web applications.

3. PROPOSED ALGORITHM

3.1 Script filtering Algorithm

 This algorithm works best because here the
mechanism implemented deals with input given by the user.
Whatever is the input given by the user is sanitized properly
and displayed to the user.

Step 1: consider user input

Step 2: while(given user input)

 If(user input contains any HTML specific tags)

 Sanitize the input and store in the database

 If(user input contains any special symbols)

 Sanitize the input and store in the database

 If(user input contains any script tags)

 Sanitize the input and store in the database

 If(user input contains any DOM objects)

 Sanitize the input and store in the database

If(user input contains window objects or document
objects)

 Sanitize the input and store in the database.

 If(user input contains any styling related code)

Sanitize the input and store it in the
database.

Step 3: Take the user input and goto step 2

Step 4: Display the results.

3.2 Flow diagram:

Fig: 1 flow chart for script filtering algorithm

3.3 Algorithm implementation

 For an attack to happen, the attacker tries to find the
user input areas. The user input is given such priority
because it is the only way for the user or client to interact
with the server. So if the attacker can be successful in
injecting the malicious code into the server an attack is
guaranteed to happen. In order to prevent the attacker to
have that privilege, we sanitize the user input. As shown in
Fig 1, we initially consider the user input. If the user input
contains any HTML specific tags like “<i>,
, <a> etc.. “ we
sanitize the request and store it in the database. If the user
input contains any special symbols which are generally used
in script functions, they should be sanitized. If the user input
contains any script tags which are one of the most serious
ways of an attack to be possible, they should be properly
sanitized. If the user input contains any styling related code
then filter the code and store it in the database. Finally, we
have restricted the redirection of a specific web application
page to some other page through which we can stop most of

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 03 | Mar -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2018

the attacks. This can be done by sanitizing the user input if it
contains any window.location or document.refferer
methods. If the above methods are not followed, the attacker
tries to steal the valuable information of the users like
cookies. Usually, if we consider any login page example
sessions will be created for every user. The flaw of any
browser is that it stores the session id in the form of a
cookie. So, if the attacker steals this cookie he can enter into
the web application as an authorized user and the results can
be more devastating.

4. EXPERIMENTS AND RESULTS

An attacker initially checks whether a web application is
vulnerable or not as shown in Fig 2.

Fig: 2 checking for vulnerability

Since the web application is vulnerable, the attacker tries to
inject the malicious code into the server which is a persistent
XSS and can be devastating as shown in Fig 3.

Fig: 3 Injecting malicious script

When an authorized user is logged into the web application
as shown in Fig 4, and unknowingly clicks the link he will be
redirected to a blank page which he feels like a dummy
comment but the attack is done as shown in Fig 5.

Fig: 4 Authorized user login

Fig: 5 Stealing cookies

This cookie is stored in attacker’s database as shown in Fig 6
and the attacker can use this cookie to login as the
authorized user.

Fig: 6 cookies stored at attacker side

In order to prevent this kind of attacks, we use code filtering
algorithm which converts the given text into a plain text
format and displays the result as shown in Fig 7.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 03 | Mar -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2019

Fig: 7 Filtered script

5. CONCLUSIONS

In this paper, we tried to restrict the XSS attacks with the
help of code filtering algorithm. This algorithm works fine
because it allows no script to store in the database and thus
no script can be made executed. But, in this paper we made
our efforts to reduce the XSS attacks by means of cookie
stealing which is not the only way of performing XSS attacks.
We would like to implement the same algorithm to restrict
attacks done through key logging etc..

REFERENCES

[1] Okin, Jonathan Robert. The information revolution: the
not-for-dummies guide to the history, technology, and use of
the World Wide Web. Ironbound Pr, 2005.

[2] Barth, Adam. "The web origin concept." (2011).

[3] http://www.acunetix.com/blog/articles/non-persistent-
xss as accessed on 11 March 2017.

 [4] Jayamsakthi Shanmugam, Dr M. "Cross Site Scripting-
Latest developments and solutions: A survey." Int. J. Open
Problems Compt. Math 1.2 (2008).

[5] http://www.acunetix.com/blog/articles/persistent-xss
as accessed on 11 March 2017.

[6]http://www.acunetix.com/blog/articles/dom-xss-
explained as accessed on 11 March 2017.

[7] Matsuda, Takeshi, Daiki Koizumi, and Michio Sonoda.
"Cross site scripting attacks detection algorithm based on
the appearance position of characters." Communications,
Computers and Applications (MIC-CCA), 2012 Mosharaka
International Conference on. IEEE, 2012.

[8] Ruse, Michelle E., and Samik Basu. "Detecting cross-site
scripting vulnerability using concolic testing." Information
Technology: New Generations (ITNG), 2013 Tenth
International Conference on. IEEE, 2013.

[9] Dong, Guowei, et al. "Detecting cross site scripting
vulnerabilities introduced by HTML5." Computer Science and

Software Engineering (JCSSE), 2014 11th International Joint
Conference on. IEEE, 2014.

[10] Gupta, Shashank, and B. B. Gupta. "Cross-Site Scripting
(XSS) attacks and defense mechanisms: classification and
state-of-the-art." International Journal of System Assurance
Engineering and Management (2015): 1-19.

http://www.acunetix.com/blog/articles/non-persistent-xss
http://www.acunetix.com/blog/articles/non-persistent-xss
http://www.acunetix.com/blog/articles/persistent-xss
http://www.acunetix.com/blog/articles/dom-xss-explained
http://www.acunetix.com/blog/articles/dom-xss-explained

