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Abstract— Cloud computing provides promising 
platforms for executing massive programs with 
significant computational assets to offer on demand. 
Even though there are many current workflow 
scheduling algorithms in traditional allotted or 
heterogeneous computing environments, they have got 
difficulties in being without delay implemented to the 
Cloud environments. Considering that Cloud differs from 
conventional heterogeneous environments through its 
service-based totally aid managing method and pay-in 
line with-use pricing strategies in this paper, we 
highlight such problems, and version the workflow 
scheduling problem which optimizes each make span and 
price as a Multi-objective Optimization problem (MOP) 
for the Cloud environments. We recommend an 
evolutionary multi-objective optimization (EMO)-
primarily based set of rules to resolve this workflow 
scheduling hassle on an infrastructure as a service (IaaS) 
platform. Novel schemes for problem-particular 
encoding and population initialization, health evaluation 
and genetic operators are proposed on this algorithm. 
The results additionally show that our algorithm can 
attain significantly higher solutions than existing 
modern day QoS optimization scheduling algorithms in 
most instances. 
 

Index terms: Cloud computing, infrastructure as a 

service, multi-objective optimization, evolutionary 

algorithm, wor kflow scheduling. 

I. Introduction  

In  trendy years, Cloud computing has end up well-

known and reached adulthood able to presenting the 

promising structures for website hosting massive-scale 

applications. In a Cloud model, on-name for 

computational resources, e.g., networks, storage and 

servers, may be allocated from a shared resource pool 

with minimum manage or interplay. The authors of this 

definition describe 3 service fashions in cloud 

computing: infrastructure as a provider (iaas), that 

encompass it offerings as e. g. computing electricity and 

storage ability; platform as a carrier (paas) that provide 

developer structures and software as a carrier (saas), 

which encompass software program services which are 

accessed via annet browser[1] [4]. 

With the help of these three services we use DAG 

[4]concept, an software model for describing workflow  

scheduling of workflows in grid allows mapping of 

responsibilities on heterogeneous assets according to a 

fixed of procedural regulations. Dynamism of resources 

in grid is an important trouble at the same time as 

making scheduling decisions, in which resources can 

fail necessarily. Screw ups of assets have damaging 

effects on overall performance of workflow application. 

Scheduling is the NP-tough problem; so many heuristic 

approaches had been implemented in the grid 

workflow [4]. One of the primary motives of any grid 

gadget is to meet consumer requirements in an 

intuitive manner by means of thinking about a couple 
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of goals or criterion. Many specific criterion can be 

taken into consideration in scheduling of complicated 

workflow [6]computational tasks, generally encompass 

execution time of the assignment, value of the venture 

to run on a resource, utilization of resources, reliability, 

turnaround time and plenty of others. ho, et al [4] 

proposed the ordinal optimization (oo) method for 

discrete-occasion problems with very large solution 

space. Sooner or later, they [5] demonstrated that the 

oo method is powerful to generate a smooth or 

suboptimal technique to most np-difficult issues. 

II. EXISTING SYSTEM 

When scheduling workflows, the characteristics that 

make cloud range from grid or other conventional 

heterogeneous environments include 1) the 

complicated pricing schemes and a couple of the large-

length useful resource swimming pools. A great deal 

existing paintings at the workflow scheduling hassle 

assumes that the financial price for a computation is 

based on the quantity of actually used resources. As an 

instance, posh assumes that the cost for executing a 

assignment is linearly or exponentially correlated to 

the overall variety of used cpu cycles. With this 

assumption, a few essential corollaries are 1) the whole 

fee of a workflow is the sum of the fees of all sub-

responsibilities, and 2) the price of a assignment is 

constant whilst running on certain carrier and 3) it 

does no longer display start and destination time for 

processing a report and 4)it does now not specify how 

the facts are stored and manipulated.  But, in cloud 

pricing schemes, the cost is decided by using the 

walking time of the underlying web hosting times. Also, 

the runtime is commonly measured with the aid of 

counting fixed-size time periods, with the partially used 

intervals rounded up. such schemes make the fee due to 

a project difficult to be precisely expected before 

scheduling. For example, a undertaking that stocks the 

equal time c programming language with the previous 

project hosted inside the identical instance might not 

produce greater cost. However, for a project which 

starts off evolved a brand new time c language however 

does now not use it entirely, the value might be extra 

than the anticipated. 

III. PROPOSED SYSTEM 

A cloud-aware extension to make list-based heuristics 

can be utilized in cloud is proposed.  This extension 

constructs a constrained-length example pool with the 

capacity to host all viable schedules from cloud in 

advance. In order to agenda a 10-task workflow, a set 

containing 10 instances for each example kind is ready. 

An iaas platform offers computational resources 

through the virtual machines. A running digital system 

is known as an instance. It's miles commonplace for a 

iaas platform to provide a extensive variety of instance 

sorts comprising various combos of cpu, memory and 

network bandwidth. in this paper, cpu capacities, which 

determine the real execution time of obligations, and 

bandwidths, which affect the data transformation time, 

are taken into consideration for each example type. 

 

IV. SYSTEM  MODULES: 
USER MODULES: 

It is the first interface that appears on the screen when 

the application is being loaded. This interface displays 

the name of the application and some other 

information about the software. The page consists of 

logins that exist for several other levels in the 

application. They consist of administrator, scheduling 

and algorithms. 

SCHEDULING TASKS: 

First, we highlight the demanding situations for present 

scheduling algorithms to be without delay 

implemented to cloud, and formulate the cloud 

workflow scheduling problem with actual-global cloud 

traits. Those challenges rise up from the differences 

between cloud and the traditional heterogeneous 

environments together with grid, and the truth that 

maximum of the existing algorithms nevertheless 

expect that the heterogeneous environments are grid-
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like. Moreover, we design our set of rules with the goal 

of being able to be directly used within the iaas 

environments. To the pleasant of our know-how, the 

proposed set of rules is the first multi-goal workflow 

scheduling algorithm which considers the actual-

international pay consistent with- use pricing strategies 

and on the equal time has been designed at once 

primarily based on the example-based totally iaas 

version 

 

 

V. DAG  ALGORITHM: 
In  which the tasks have been indexed using the results 
of a topological sort. Gives  the encoding of a possible 
schedule for this workflow. In this schedule, the fitness 
function, discussed in  follows the sequence ½T0; T1; 
T3; T5; T2; T4; T6_to compute the finish time of T6, 
which is used as the make span of the workflow. It 
gives the mappings from the tasks to the instances and 
from the instances to their types of  task T0 will be 
scheduled to instance I1whose type is P4.C 

 

VI. WORKFLOW SCHEDULING: 

In the workflow scheduling problem, the fitness of a 
solution is related to a trade-off between two objectives 
which are make span and cost. As calculating the make 
span of a solution is to compute the finish time of Taxi. 
Here we define two functions ST and FT, which are 
respectively the start time and finish time of Ti in a 
given schedule. The start time of a task depends on the 
finish time of all its predecessors ,the communication 
time between its predecessors and itself, and the finish 
time of the previous task that has been executed on the 
same instance. 

 

VII. WORKFLOW SCHEDULING PROBLEM 
WORKFLOW DEFINITION: 

A common method to represent workflow is to use 

Direct Acyclic Graph(DAG). A workflow is a DAG 

W=(T,D), where T={ T0,T1….Tn} is the set of tasks and 

D={(TI,TJ)|TI,TJ belongs to T.} is the set of data or 

control dependentcies, The assigned to the tasks 

represent their reference execution time, which is the 

time to running the task on a processor of a specific 

type, and the weights attached to the edges represent 

the size of the data transferred between tasks. The 

reference exection time to time Ti is denoted as 

refertime (ti)and the data transfer size from ti to tj is 

denoted as data as (Ti,Tj). 

In addition, we define all predecessors of tasks Ti, as  

Pred(Ti)={Tj|(Tj,Ti)belongs to D} 

For a given W ,T entry denotes an entry tasks satisfying  

Pred(Tentry)=null 

And T exit denotes an exit tasks satisfying 

Not Ti belongs T: exits which belongs to pred(Ti). 

Most scheduling algorithms require a DAG with a 

single T entry  and single T exist. This can be easily 

assured by adding a pseudo  T entry and T exit with 

zero weight to the DAG. In this paper, we also assume 

that the given workflow has single T entry and T exit. 

 

WORKFLOW SCHEDULING PROBLEM: 

Given a workflow W=(T,D) and an Iaas platform 

S=(I,P,M) a scheduling problem is to produce one or 

more solutions R=(Ins, Type, Order)where Ins and 

Type are mappings indicating which instance each task 

is put on the type of that instance, as 

Ins:TI,       I,Ins(Ti)=Ij; 
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Type:I,        P,Type(Is)=Pt; 

And order is a vector containing the scheduling order of 

tasks. An order must satisfy the dependency 

restrictions between tasks, that is, a task cannot be 

scheduled unless all its predecessors have been 

scheduled. In this paper, we consider the problem that 

uses only one pricing option in a single schedule. The 

pricing option is chosen by users, denoted as 

Mo.Combining several pricing in our future work. 

EVOLUTIONARY MULTI-GOAL OPTIMIZATION: 

A multi-objective optimization problem is a problem 

that has several conflicting objectives which need to be 

optimized simultaneously : 

Minimize:F(x)=(f1(x),….f2(x),fk(x))T 

Where x belongs X and X is the decision space. The 

workflow  scheduling problem can be seen as an MOP, 

whose objectives in an MOP usually conflict with each 

other, parent dominance is commonly used to 

compare solutions. For u, v belongs to X, u is said to 

dominate v if and only if, 

Fi(u)<=fi(u)^belongs j:for all j:fj(u)<fj(v). 

A solution x* is pareto optimal if it is not dominated by 

any other solution .The set of all pareto optimal 

solutions in the objective space is called pareto front. 

For the Cloud workflow scheduling problem, schedule 

I* dominates schedule I if neither the cost nor the 

makespan of I* is larger than that of I, and at least one 

them is less. EAs which simulate natural evolution 

processes have been found increasing successful for 

addressing MOPs with various characteristics 

[12],[13],[14],[15].One  significant advantage of EAs in 

the context of MOPs(called EMO Algorithm) is that they 

can achieve an approximation of the Pareto front ,in 

which each solution represents a unique trade off 

amongst the objectives. 

Due to the properties of the cloud workflow scheduling 

problem, it is hard to adopt the existing genetic 

operations in the EMO areas, such as binary encoding 

,real-valued encoding and the corresponding variations 

operators based on them. By taking full advantage of 

the problem’s properties, we thus present a whole set 

of the exploration operations, including encoding, 

population initialization, crossover, and mutation. 

These operations can work with any explitation 

operations in the EMO area, as we have already applied 

them to several classical EMO area , as we have already 

applied them to several classical EMO algorithm such as 

NSGA-2,SPEA2,and MOEA/D .Some algorithms used for 

scheduling are listed below: 

1.fitness function 

2.Encoding 

3.Genertic operators 

       3.1 cross over 

       3.2 mutation 

4.Initial population 

1.FITNESS FUNCTION: 

In the workflow scheduling problem, the fitness of a 

solution  is related to a trade-ff between two objectives 

which are makespace and cost. Here we define two 

functions ST and FT, which are respectively the start 

time and finish time of Ti in a given schedule. The start 

time of a task depends on the finish time of all its 

predecessors, the communication time between its 

predecessors and itself, and the finish time of the 

previous task that has been executed on the same 

instance. The recurrence relations are , 

ST(Tentry)=0,                                  (1) 

ST(Tj)=max{avail(Ins(Ti)),max 

(FT(Tj)+Timecomm(Tj,Ti))},           (2) 
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FT(Ti)=ST(Ti)+Timecomp(Ti)           (3)                      

 

Figure 1 an example of workflow DAG 

Where ,avail(Ii) is the available time of instance Ii, 

which changes dynamically during scheduling. After Ti 

is decided to be scheduled to the instance (Ij)avail(Ij) 

will be updated to FT(Ti). 

After the finish time of Texit is calculated, the final 

available time of an instance will be used as the 

estimate of its shutdown time, and the start time of the 

first task being assigned to the instance will be used as 

the estimate its launch time. The separate costs of all 

the instance being used are then  calculated by the 

platform-specific charge  function and summed up as 

the total cost. 

2.ENCODING: 

Here, the first step of encoding is to make a topological 

sorting then assign an integer index to each task 

according to the sorting results. The index starts from 

0, and Ti is referred to a task whose index is i. As 

discussed in Section 3.3, a solution is a three-tuple 

containing a sequence Order and two mappings Ins and 

type. We split a chromosome into three strings to 

represent them respectively. The string order is a 

vector containing a permutation of all task indexes. If  i 

occurs before j in order, the hosting instance of task Ti 

will be determined before that of Tj. However, it does 

not mean that the execution of Ti must start before Tj. 

The start time of a task is determined by the hosting 

instance and its predecessors (see Eq. (2)). The second 

string task2ins is a n-length vector representing the 

mapping Ins, in which an index represents  a task and 

its value represents the instance where this task will be 

executed. As mentioned in Section 3.2, the instance set I 

could be reduced to a n-size set, so that it is possible to 

index all instances using integers from 0 to n _ 1. For 

example, task2ins[i]=j makes Ti be assigned. 

 

 

to the instance with index j (represented as Ij).The 

instance types are also indexed previously using 

integers from 0 to m _ 1, and ins2type[j]=k indicates 

that the type  of instance Ij is Pk. Fig. The 1 shows an 

example DAG, in which the tasks have been indexed 

using the results of a topological sort. Fig. 2 gives the 

encoding of a possible schedule for this workflow. In 

Section 4.1, follows the sequence ½T0; T1; T3; T5; T2; 

T4; T6_ 

to compute the finish time of T6, which is used as the 

make span of the workflow. 

VIII. GENETIC OPERATORS: 
  Cross over 

A valid scheduling order must follow the task 

dependencies.For example, if a task T_ is a successor of 

T, T_ must occur after T in string order. The crossover 

operation should not violate these restrictions. We 

design the crossover operator for the order strings as 
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given in Fig. 3. First, the operator randomly chooses a 

cut-off position, which splits each parent string into 

two substrings.(Step 3). After that, the two first 

substrings are swapped to be the offspring, and the 

second substrings are discarded.(Steps 4-5). Then, each 

parent order string is scanned from the beginning, with 

any task that has not occurred in the first substring 

being appended to the end of this offspring (Steps 6-10, 

11-15). This operator will not cause any dependency 

conflict since the order of any two tasks should have 

already existed in at least one parent. An example of 

this operation is given in Fig. 4, in which the position 3 

is randomly chosen as the cut-off position. The first 

three items in both strings are swapped. Then, the 

missing tasks for each offspring are appended to its 

end, in their original orders. Analogously, the operator 

first randomly selects a cut-off point, and then, the first 

parts of two parent task2ins strings are swapped. Here, 

it is noteworthy that the type of the instance on which a 

task is running could also be important information for 

this task, and it is better to keep this relationship. 

Mutation will be introduced to increase the search 

ability of the algorithm. 

 

 

The pseudocode of this operation is given in Fig. 5. Step 

3 selects the cut-off point. Before swapping tasks in the 

first parts (Step 7), an ancillary procedure is invoked. 

This ancillary procedure, called DecideType, decides on 

the type of the new hosting instance of task T in 

individual B, when  moving from the instance specified 

in individual A. For this decision, the types of the new 

instance (I0), in both individuals, are taken out (Pa and 

Pb in Steps 2-3). Then Step 3decides whether the type 

of I0 in B should be changed to Pa or not. If there is no 

any task whose index is greater than or equal to the 

cut-off position p is scheduled to I0 (Step 4), the type of 

I0 will be changed to Pa (Step 10), with a mutation. 
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  MUTATION: 

Like the crossover operators, the mutation operator of 

string  order should not break the task dependencies 

either. First, we define all successors of task Ti as 

Succ(Ti)= {Tj | (Ti; Tj)belongs to D} 

Fig. 7 gives the pseudocode of order mutation. Starting 

from task T, the operator searches for a substring in 

which  each task is neither a predecessor nor a 

successor of T (Steps 4-10). Then, T is moved to a 

randomly chosen new position inside this substring 

(Steps 11-12). On each direction,  the search procedure 

starts from the position of T, and stops once the current 

task is either in predðTÞ or in succðTÞ. Fig. 8 

demonstrates an example where task 2 is randomly 

chosen to be the mutation point. A search is then 

performed to find the substring meeting the conditions, 

between task 1 and task 4. Finally, task 2 is randomly 

moved to a new position inside this substring. 

 

 

 

Fig 8.An example of order mutation. 

Here, the mutation for the strings task2ins andins2type 

is performed by a classical operator, that is, 

randomlygenerating a new valid value for each 

position, witha small probability. 

 

IX. INITIAL POPULATION: 
In the workflow scheduling problem, the search space 

of solutions is typically huge, especially when a large 

workflow is involved, which could cause evolutionary 

algorithms very slow to coverage. In our algorithm, to 

accelerate the search procedure, the initial population 

consists of the individuals generated by different 

initialization methods. Assuming the size of population 

is n, these individuals include a schedule computed by 

HEFT, which is treated as fastest schedule, a ”cheapest” 

schedule produced at the same time, when executing 

HEFT, as an estimate of the cheapest schedule,n-2 

random schedules initialized by a procedure named R 

and Type or Ins. First ,HEFT is slightly extended for 
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guessing an individual that can approach the cheapest 

cost, along with the standard procedure of finding the 

fastest schedule. This cheapest schedule is produced by 

assigning the task to the instance which can minimize 

the currently-generated cost in the processor selection 

phase of each task. This individual might not be the 

actual cheapest one: inspite of that ,it could still be seen 

as a rough approximation of one endpoint of the Pareto 

front. At the same time, the fastest individual produced 

by the original HEFT could be used as another 

approximate endpoint. Besides these two heuristic-

generated schedules, we initialize other individuals 

randomly. For each individual, the procedure is 

presented in fig.9. First, the string order is simply 

constructed as an increasing sequence ½0; 1; . . . n _ 1_ 

(line 4). Then , a specific instance type is randomly 

chosen, and all instances will share this type, by setting 

all bits of the ins2type string to the index of this type 

(line 5). Finally , the string task2ins is initialized by a 

random choice of two methods, with equal probability 

(line 6). The first method is to put all tasks in a single 

instance, by setting all bits of task2ins to 0.  

 

X. COMPLEXITY ANALYSIS: 
The time complexity for both CrossoverOrder and 

MutateOrder is O(n), where n is the number of tasks. 

The time complexity of the procedure CrossoverIns is 

O(n2),because for each swapped instance in the string 

task2ins,an O(n) scan is needed to find whether it also 

hosts another task according to the opposite individual. 

The evaluation procedure for each individual has an 

O(e)time complexity. For a given DAG, the number of 

edges could be at most n2,so the time complexity of 

each evaluation is on the order of O(n2). Thus, the 

overall complexity of the evolution is on the order of 

O(kgn2), with k individuals in population and g 

generations. Besides the evolution procedure, when 

initializing the first population, HEFT is performed 

once. The HEFT algorithm has Oðsn2Þ complexity 

where s is the number of available services [17]. By 

using the Cloud-aware extension proposed in [16], a 

heterogeneous environment can be constructed by m*n 

instances in Cloud, where m is the number of instance 

types. Thus, HEFT has the time complexity of O(mn3) in 

our initialization scheme. Above all, the overall 

computational complexity of our proposed algorithm is 

on the order of O(mn3 + kgmn2).However, we would 

like to point out that, when executing HEFT in the 

population initialization procedure, a large number of 

redundant calculations could be eliminated or 

optimized if using proper data structures. Most 

instances in the simulated service pool are not used at 

all, and several unused instances are actually identical 

if they also share a same type. Also, in practice, m *n is 

usually much less then k * g. Therefore, the most time-

consuming parts would still be the evolution 

procedures, with the complexity of O(kgn^2). 

XI. RELATED WORK: 
There had been some of efforts within the Grid 

community to broaden general-motive workflow 

management solutions. [2] Web Flow  is a multileveled 

machine for high performance allotted 

computing[2].The Directed Acyclic Graph (DAG) [4] 

primarily based assignment graphs in parallel 

computing are said already in literature  for scheduling 

trouble. QoS[6] aware heuristic has been proposed in  

for grid unbiased challenge scheduling. In 

Heterogeneous Earliest finish Time(HEFT) and Genetic 

Algorithms have been applied with extension for the 

ASKALON surroundings to solve medical workflow 
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[1] they focus on maximum digital machines that can be 

deployed within a data center to react greater flexible 

on purchaser needs. 

XII. CONCLUSION AND FUTURE WORK: 
Although there are many existing workflow scheduling 

algorithms for the mulit-processor architectures or 

heterogenous computing environments, they have 

difficulties in being directly applied to the cloud 

environment. In this paper, we try to address this by 

modeling the workflow scheduling problem in cloud as 

a multi-objective optimization problem where we have 

considered the real-world cloud computing models. To 

solve the multi-objective cloud scheduling problem 

which minimizes both makespan and cost 

simultaneously, we propose a novel encoding scheme 

which represents all the scheduling orders, task-

instance assignments and instance specification 

choices, based on this scheme,we also introduce a set of 

new genetic 

operators, the evaluation function and the population 

initialization scheme for this problem. We apply our 

designs to several popular EMO frameworks, and test 

the proposed algorithm on both the real workflows and 

work sets for randomly generated workflows. 

Combining several pricing options in a single 

scheduling procedure might be studied in our future 

work. 
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