
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 02 | Feb -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 293

 Exceptions and Exception Handling in C++

ANURAG SINGH

 Dr.APJ Abdul Kalam Technical University Uttar Pradesh
Department of Computer Science and engineering, IEC College of Engineering & Technology, Uttar Pradesh, India.

---***---

Abstract - Exception handling is the process of responding
to the occurrence, during computation, of exceptions or
exceptional conditions requiring special processing .An
exception is a problem that arises during the execution of
the program. A C++ exceptions a type of response for an
exceptional situation that arises while a program is
running, in such types of situation as an attempt to divide by
zero. The errors occurred in program may be logical errors
or syntactic errors. The logical errors remains in the
program due to an unsatisfactory understanding of the
program. The goal of exception handling is to create a
routine that detect and sends an exceptional condition in
order to execute suitable actions.

Key Words: Exceptions, try, catch, throw, re-throwing.

Introduction:

Exceptions are errors that occur at run time. They are
caused by a wide variety of exceptional circumstance, such
as running out of memory, not being able to open a file,
trying to initialize an object to an impossible value, or
using an out - of - bounds index to a vector. An exception is
an error or an expected event. The exception handler is a
set of codes that executes when an exception occurs.
Exception handling is one of the most recently added
features in C++.
Exception handling in C++ provides a better method by
which the caller of a function can be informed that some
error condition has occurred. The following keywords are
used for error handling in C++.

 Try
 Catch
 Throw

An exception also known as run time errors because these
are occurs at runtime. For example there may be an
abnormal condition or unexpected behavior when we try
to divide a number by zero or an array is accessed outside
of it’s bounds, or when required memory is not available,
etc.

1.1 Program for Demo of Exception:

#include<iostream.h>
void main()
{

 Int a, b, x;

 cout<<”Enter two numbers\n”;

 cin>>a>>b;

 x=a/b;

 cout<<a<<”/”<<b<<”=”<<x;

}

Output 1

Enter two numbers

20

5

20/5 = 4

Output 2

Enter two numbers

13

0

Not produce any output but will terminate abnormally and
produce an exception divide- error.

2. Process:

Sometimes the application makes a mistake, causing an
error to be detected in a member function. This member
function then informs the application that an error has
occurred. When exceptions are used, this is called
throwing an exception. In this application we install a
separate section of code to handle the error. This code is
called an exception handler or catch block, It catches the
exceptions thrown by the number function. Any code in
application that uses object of the class is enclosed in a try
block. Error generate in the block will be caught in the
catch block.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 02 | Feb -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 294

Fig. The Exception mechanism.

The general for of the try and catch block is as follow:

Try mechanism:

try

{

 …………

 …………

throw exception ; // block of statements

}// which detect and throws an exception.

catch(arg) // catches exception

{

 ………// block of statement

 ……… // handle the exception

}

When the try block detect an exception that throws it
then the control is transferred from the try block to
the catch block. When n exception is detected and
thrown then the control goes to the statements
immediately after the catch block i.e. the catch block is
skipped.
The exception that is thrown by catch block is an
object which gives information about exception. The
type of object thrown must match to the type of
argument arg inside the catch parenthesis otherwise
catch block does not execute.

2.1 Throwing mechanism:

When an exception that is desired to be handled to be
detected. It is throw using the throw statement in one of
the following forms.

throw(exception);

throw ; //used for re-throwing an exception.

The operand object exception may be of any type,
including constants. It is also possible to throw objects not
intended for error handling. When an exception is throw,
It will be caught by the catch statement associated with
the try block. That is the control exits the current try
block, and is transferred to the catch block after that try
block. Throw point can be in deeply nested scope with a
try block or in a deeply nested function call. In any case,
control is transferred to the catch statement.

2.1.1 Program for throw exception

#include<iostream.h>

#include<conio.h>

Void divide()

{

 Int a, b, x;

 cout<<”Enter two numbers\n”;

 cin>>a>>b;

 if(b==0)

 {

 throw(a);

 }

 Else

 {

 x = a/b;

 cout<<a<<”/”<<b<<”=<<x”;

 }

 }

Void main()

{

try

{

 divide()

 }

 catch(int i)

 {

cout<<”Divide by zero”;

 }

}

Output 1
Enter two numbers

16

4

16/4= 4

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 02 | Feb -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 295

Output 2

Enter two numbers

17

0

Divide by zero error.

2.2 Catch mechanism:

The catch statement catches an exception whose type
match with the type of catch argument. When it is caught,
The code in the catch block executed.
Code for handling exception is included in catch blocks, A
catch block looks a function definition and is of the form

catch(arg)

{

// statement for

// managing exceptions

}

The type indicates the type of exception that catch block
handles. The parameter arg is an optional parameter
name.
If the parameter in the catch statement is named, then the
parameter can be used in the exception handling code.
After executing the handler the control goes to the
statement immediately following catch block. Due to
mismatch if any exception is not caught, abnormal
program termination will occur.

2.2.1 Multiple catch statements:

It is possible that a program can generate more than one
type of exceptions. In such cases, we can have more than
one catch statement with a single try block.

try

{

// try block

}

catch(type1 arg)

{

 // catch block 1

 }

catch(type2 arg)

{

 // catch block 2

}

…………………………

…………………………

catch(typeN arg)

{

 // catch block N

}

It is possible that arguments of several catch statements
match the type of an exception, In such cases, The first
handler that matches the exception type is executed. The
type of argument inside the parenthesis of catch block
indicates the type of exception that catch block handles
and argument is an optional parameter name.

2.2.2 Program for multiple catch block:

#include< iostream.h >

void test()

{

 try

 {

If(x= =0)

 throw x;

//throwing an int type of exception.

else if(x= =1)

 throw ‘x’;
// throwing a char type of exception.

else if(x= = -1)

 throw 1.0;

// throwing a double type of exception.

}

catch(int i)

{

Cout<<”Character type of exception caught\n”;

}

catch(int i)

{

cout<<”Integer type of exception caught\n”;

}

catch(double i)

{

cout<<”Double type of exception caught\n”;

}

void main()

{

Int a;

cout<<”Enter a number\n”;

cin>>a;

test(a);

}

Output 1

Enter a number

1

Character type of exception caught.

End of multiple try – catch block.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 02 | Feb -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 296

Output 2

Enter a number

0

Integer type of exception caught.

End of multiple try – catch block.

Output 3

Enter a number

-1

Double type of exception caught.

End of multiple try – catch block.

Output 4

Enter a number

2

End of multiple try – catch block.

3. Re-throwing an exception:

A catch block itself may detect and throw an exception.
When an exception is thrown in the catch block then this is
known as re-throwing an exception. To re-throw an
exception we may simple use throw without any
arguments.
throw;

The above statement will re-throw the current exception
and it will not be caught by the same catch in the parallel
try-catch block. Rather it will be caught by an appropriate
catch of the outer try-catch block only.

3.1 Program for Re-throwing an exception:

#include<iostream.h>

void main()

int a, b;

cout<<”Enter two numbers\n”;

cin>>a>>b;

try

{

 Try

 {

 If(b= = 0)

 throw b;

//throwing int type of exception

 else

cout<<a<<”/”<<b<<”=”<<a/b<<endl\n;

 }

catch(int)

{

cout<<”Integer type exception caught \n”;

throw;

// re-throwing int type of exception

}

}

catch(int)

{

Cout<<”Integer type exception caught again\n”;

}

}

Output 1

Enter two numbers

15

3

15/3=5

Output 2

Enter two numbers

15

0

Integer type exception caught

Integer type exception caught again.

4. Specifying exception:

It is possible to restrict a function to throw only specified

type of exceptions. This is done by the following syntax:

return_typefunction_name(argument

list)throw(exception_type_list)

{

……….

……… //function body

}

The exception_type_list specify the type of exceptions that

can be thrown by the functions. Throwing any other type

of exception will cause abnormal program termination.

A function can only be restricted in what types of

exceptions it throws back to try block that called it and not

within a function.

5. References:

1. Advanced Topics in Exception handling techniques

“ISBN 3540374435”.

2. Exception Handling Resumption v/s termination.

3. Optimizing away C++ exception handling bye Schilling

Jonathan L.

4. Lecture notes by Praveen Kumar from Incapp Infotech

Pvt. Ltd.

5. Uncaught exception bye “Mac Developer Library”.

