
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 02 | Feb -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 606

AREA AND POWER PERFORMANCE ANALYSIS OF FLOATING POINT

ALU USING PIPELINING
Shubhi Sharma1, Sarvesh Sharma2, S.Ravi3

1M.Tech VLSI Design, Vellore Institute of Technology, Vellore
2M.Tech VLSI Design, Vellore Institute of Technology, Vellore

 3Professor, Dept. of electronics Engineering, Vellore Institute of Technology, Tamil Nadu, India

---***---
Abstract - We are computing the area, power and timing

analysis of floating point arithmetic using pipelining. Nowdays

all signal processing algorithms are presented by double

precision floating point for hardware implementation as large

precision needs large dynamic range. Fixed point has a

drawback over floating point, that is fixed point cannot be

used for high precision computing as it lacks for large dynamic

range. For designing of digital processor computation of

arithmetic operations is very important. Which can be easily

computed using floating point. In this paper we are

computing four unit and one combined unit which are

performing the computation 0.0178 times faster at 0.26GHz

using Verilog RTL on cadence tool.

Key Words: Verilog, Floating point, ALU, Fixed point,
FPGA.

1.INTRODUCTION

Nowdays all signal handling calculations are exhibited

by double precision floating point [2] for hardware

implementation as expansive exactness needs

extensive element range. Fixed point [1] has a

disadvantage over floating point, that is fixed point

can't be utilized for high accuracy registering as it

needs for extensive element range. At the point when

floating point is utilized with FPGA [4] (field

programmable Array) it has area and power and timing

examination overhead over fixed point. For planning of

digital processor calculation of number arithmetic

operations is very important. Which can be effectively

registered utilizing floating point. Floating point

number can be utilized as a part of a few applications

like FFT, DSP and where ever high performance is

required. We utilize floating point to represent

numbers which can't be displayed in whole number

because of expansive or little values. At the point when

floating point is utilized with FPGA (field

programmable array) it has area and power and timing

examination overhead over fixed point. Floating point

can in like manner be used as a piece of 3D

representation which requires parallel execution.

Floating point addition and multiplication are two most

much of the time utilized operations utilizing double

precision. To vary the area, latency and power

researchers fused add and multiply unit, add and

subtract unit, divide and multiply unit. Using this

combination we can have numerous applications. Here

we are utilizing Verilog HDL [3] configuration to do

pipelined operation and for arithmetic modules. The

four operations are addition, subtraction,

multiplication, division. Arithmetic logic unit (ALU) [1]

is a microprocessor block. All the arithmetic operations

happens in this microprocessor block, consequently

execution of these block are vital for the entire circuit.

Pipelining procedure is utilized to outline computer

and digital electronics which use to give us expanded

throughput. This paper has execution of double

precision that is 64 bits [3] which support four

essential operations that is addition, subtraction,

multiplication and division [9,10].

2. FLOATING POINT NUMBER
Representation of 64 bit floating point number that is double

precision is as shown below:

 Fig -1: 64 bit floating point number

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 02 | Feb -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 607

The sign bit is bit number 63rd. "1" means a ‘–ve’ number, and
"0" is a ‘+ve’ number. The exponent field is 11 bits in length,
involving 62 to 52 bits. The worth in this 11-bit long field is
counterbalanced by 1023, so the genuine type used to figure
the estimation of the number is 2^(e-1023) . Give us a chance
to comprehend it through an illustration, let us take a number
3.5. Presently we will introduce it in floating point group The
63rd bit sign bit is 0 which speak to a ‘+ve’ number. So the
exponent become 1024. This can be ascertained by

separating 3.5 as (1.75)*2^(1). The example counterbalance
is 1023, so you add ‘1023 + 1’ to ascertain the worth for the
type field. In this way, bits 62 to 52 will be "1000000000".
The main "1" in the type is appeared however is excluded in
the arrangement of 64-bit. Most astounding piece of type is

51 which compares to 2^(-1). Bit 50 relates to 2^(-2), and

this proceeds down to Bit 0 which compares to 2^(-52). To

speak to .75, bits 51 and 50 are 1's, and whatever is left of
the bits are zeros. So 3.5 as a double precision floating point
number may be:

Fig -2: Double Precision example

2.1 Pipelined adder

We have five stages in an ordinary floating point calculation.

They are example exponent difference pre arrangement,

addition, standardization and adjusting separately. Give us a

chance to take a case of floating point number Z1 =(a1 , e1,

f1) and Z2 =(a2, e2, f2). Presently to process for Z1+Z2 we

have exponent difference is the initial step d =e1-e2 and if

e1<e2 position of type is swapped and the bigger type is

given in the outcome. Step 2 incorporates moving of littler

portion by d bits to one side and the fraction is realigned

now include part.

In the event that the outcome is leaded by zero result will be

moved left and type is decremented by driving zero

 Right move is performed if result floods and

exponent is expanded by 1-bit. This procedure we called as

standardization. Round the fraction part come about, if

adjusting makes flood than augmentation example by 1-bit by

moving right. Alignment stage requires a right shifter that is

double the quantity of fraction bits in light of the fact that the

bits moved out must be kept up to create the gatekeeper,

round and sticky bits required for adjusting. The shifter only

needs to shift right by up to 24 places for single-precision or

53 places for double-precision. The normalization stage

requires a left shifter equal to the number of exponent bits

plus 1 i.e., 25-bits for single-precision and 54-bit for double

precision.

 Pipelined adder is utilized to build the throughput of

the adder unit for this we work all sign, exponential, and

division bit independently than type are moved

appropriately to liken the type and operation is done on

partial piece.

Fig 3: Pipelined adder/subtractor

Table -1: Adder Results

Parameters Without

pipelining

 With pipelining

 45nm 32nm

Power(mW) 0.096 6.35 1.6

Area (µm2) 1195 6351 5969

Timing (ps) 1785 1650 1500

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 02 | Feb -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 608

2.2 Pipelined subtractor

 We have five stages in an ordinary floating point

calculation. They are example exponent difference pre

arrangement, addition, standardization and adjusting

separately. Give us a chance to take a case of floating point

number Z1 =(a1 , e1, f1) and Z2 =(a2, e2, f2). Presently to

process for Z1-Z2 we have exponent difference is the initial

step d =e1-e2 and if e1<e2 position of type is swapped and

the bigger type is given in the outcome. Step 2 incorporates

moving of littler portion by d bits to one side and the fraction

is realigned now include part.

In the event that the outcome is leaded by zero result will be

moved left and type is decremented by driving zero Right

move is performed if result floods and exponent is expanded

by 1-bit. This procedure we called as standardization. Round

the fraction part come about, if adjusting makes flood than

augmentation example by 1-bit by moving right. Alignment

stage requires a right shifter that is double the quantity of

fraction bits (i.e., 48- bits for single-accuracy, 106-bits for

twofold exactness) in light of the fact that the bits moved

out must be kept up to create the gatekeeper, round and

sticky bits required for adjusting. The shifter only needs

to shift right by up to 24 places for single-precision or

53 places for double-precision. The normalization stage

requires a left shifter equal to the number of exponent

bits plus 1 i.e., 25-bits for single-precision and 54-bit

for double precision.

 Pipelined subtractor is utilized to build the

throughput of the adder unit for this we work all sign,

exponential, and division bit independently than type

are moved appropriately to liken the type and

operation is done on partial piece.

Table -2: Subtractor Results

Parameters Without

pipelining

 With pipelining

 45nm 32nm

Power(mW) 8.2 5.4 2.35

Area (µm2) 1149 8294 6520

Timing (ps) 1649 2398 2100

2.3 Pipelined multiplication

 Give us a chance to have two operands in division

they are operand A and operand B with a leading 1

which connotes the standardized number is put away

in 53-bit register A and 53-bit register B. Presently we

will get 106-piece item on increasing 53-bit An and 53-

bit B register esteem. Presently the amalgamation

apparatuses Xilinx [1]and Altera does not give us

duplication of 53-bit by 53-bit so keeping in mind the

end goal to streamline our work we will soften 53-bit

up 24-bit and 17-bit littler various units and then at

long last their expansion is done at the completion took

after by adjusting. At long last enlist will store the 106

piece of result and yield is lessened by making a

movement if there is not 1 present in the MSB. The type

exponent of operands A and B are included and after

that the worth (1022) is subtracted from the aggregate

of A and B. In the event that the resultant type is under

0, than the (item) enroll should be right moved by the

sum. This worth is put away in storage. The last type of

the yield operand become ‘0’ for this situation, and the

outcome will be a de-normalized number. In the event

that exponent under is more prominent than 52, than

the fraction will be moved out of the item enroll, and

the yield will be ‘0’, and the "underflow" sign will be

stated. The exponent yield from the (fpu _ mul) module

is in 56-bit long length register. The MSB is a main "0"

to take into overflow in the adjusting module. The

primary bit "0" is trailed by the main "1" for

standardized numbers, or "0" for de-normalized

numbers. At that point the 52 bit long of the fraction

take after. 2 additional bits take after the fraction, and

are utilized for adjusting purposes. The main additional

piece is taken from the following piece after the

fraction in the 106 - piece item consequence of the

duplicate. The 2nd additional piece is an OR operation

of the 52 LSB's of the 106 piece item. Keeping in mind

the end goal to increase the throughput as far as range

or power or timing in this paper we connected the

pipelining concept, pipelining have the idea of dividing

the information in example and portion in two subunits

and performing them separately, example includes a

subpipe than standardization is performed in a typical

standardization subpipe to bring the yield.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 02 | Feb -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 609

Fig 4: Pipelined Multiplier

Table -3: Multiplication Results

Parameters Without

pipelining

 With pipelining

 45nm 32nm

Power(mW) 5.8 5.6 5.2

Area (µm2) 9482 35719 29781

Timing (ps) 1804 3300 2900

2.4 pipelined divider

 The divider gets two 64-bit floating point numbers.

To start with these numbers are unloaded by isolating

the numbers into sign, example, and mantissa bits. Sign

bit of two number perform EXCLUSIVE-OR [2]

operation. The exponent of the two numbers are

subtracted and after that included with a

predisposition number. Mantissa division square

performs division utilizing digit repeat calculation. It

take minimum 55 clock cycle. After this the yield of

mantissa division is standardized, if the MSB of the

outcome got is not 1, then it is left moved to make the

MSB 1. On the off chance that progressions are rolled

out by moving then comparing improvements must be

made in type moreover. After mantissa division the

yield is 55 bit long. Be that as it may, we require just 53

bit mantissa. So after standardization the 55 bit yield is

gone on to the adjusting control. Here adjusting choice

is made in view of the mode chose by the user. This

mode chooses whether adjusting must be performed –

round to closest (code = ‘00’), round to ‘0’ (code = ‘01’),

round to ‘+ve’ infinity (code = ‘10’), and round to ‘-ve’

vastness (code = ‘11’). In view of the adjusting changes

into the mantissa comparing changes must be made in

the type part also. For round to nearest mode , if the 1st

additional leftover portion bit is 1, and the LSB of the

mantissa is a 1, then this will become adjusting. For

round to 0th mode, no adjusting is operated, unless the

yield is sure or ‘-ve’ infinity. This is because of how

every operation is executed. For increase and gap, the

rest of left the mantissa, thus fundamentally, the

operation is as of now adjusting to zero even before the

consequence of the operation is gone to the adjusting

module. For round to positive infinity mode, the two

additional leftover portion bits are checked, and if

there is a "1" in either bit, or the sign piece is '0', then

the adjusting sum will be activated. Similarly, for round

to negative infinity mode, the two additional leftover

portion bits are checked, and if there is a "1" in both

bits, and the sign piece is '1', then the adjusting sum

will be activated. Standardized mantissa will be

checked for any exemptions, where the greater part of

the extraordinary cases are checked. The extraordinary

cases are: Divide by 0 - result is infinity, positive or

negative, contingent upon the indication of operand Divide 0

by 0 - result is SNaN [7], and the invalid sign will be attested

Divide infinity by infinity result is SNaN, and the invalid sign

will be affirmed. Divide by infinity - result is 0, positive or

negative, contingent upon the indication of operand and the

undercurrent sign will be asserted. Divide overflow result is

endlessness, and the flood sign will be stated. Divide

underflow result is 0, and the underflow signal will be stated.

One or both inputs are QNaN [7] output is QNaN one or both

inputs are SNaN yield is QNaN, and the invalid sign will be

stated. On the off chance that any of the above cases

happens, the special case sign will be stated. On the off

chance that the yield is positive vastness, and the adjusting

mode is round to zero or round to negative limitlessness,

then the yield will be adjusted down to the biggest positive

number (exponent = 2046 and mantissa is every one of the

1's). In like manner, if the yield is negative limitlessness, and

the adjusting mode is round to zero or round to positive

vastness, then the yield will be adjusted down to the biggest

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 02 | Feb -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 610

negative number. The adjusting of vastness happens in the

special cases module, not in the adjusting module. QNaN [7]

is characterized as Quiet Not a Number. SNaN [7] is

characterized as Signaling Not a Number. In the event that

either information is a SNaN, then the operation is invalid.

The yield all things considered will be a QNaN. For all other

invalid operations, the yield will be a SNaN. In the event that

either information is a QNaN, the operation won't be

performed, and the yield will be a QNaN. On the off chance

that both inputs are QNaNs, the yield will be the QNaN in

operand A. The utilization of Not a Number is predictable

with the IEEE 754 standard [3]. At last every one of the

yields from the sign, type and mantissa are connected to

create the last remainder. The entire operation takes

around 62 clock cycles. For expanding the recurrence or

throughput of the circuit the division step is unrolled and at

that point a few pipelining stages are embedded in the

middle of every minor operation. The range of a pipeline

configuration can be communicated as A Pipe = nc + [n/m]r

where c is the combinational territory of a solitary cycle, r is

the quantity of bit registers required for a solitary pipeline

stage, d is the execution deferral of a solitary iteration, and n

is the number of cycles in the successive outline.

Fig 5: Pipelined dvider

Table -4: divider Results

Parameters Without

pipelining

 With pipelining

 45nm 32nm

Power (mW) 2.6 8.035 3.5

Area (µm2) 10343 12730 11474

Timing (ps) 3621 2798 2298

3. TOP MODULE

The top level, fpu _ double, begins a counter the 1st clock cycle
after empower become high. The counter tallies up to the
quantity of clock cycle required for this particular operation
that will be performed. For expansion, it tallies to 20, for
subtraction 21, for duplication 24, and for division 71. When
count_ready achieves the predetermined last check, the
prepared sign goes high, and the yield will be substantial for
the operation being performed. fpu_double contains the
instantiations of the other 6 modules, which are 6 separate
source records of the 4 operations (include, subtract,
duplicate, gap) and the adjusting module and exemptions
module. On the off chance that the fpu operation is expansion,
and one operand is certain and the other is negative, the
fpu_double module will course the operation to the
subtraction module. Moreover, if the operation called for is
subtraction, and the A operand is certain and the B operand is
negative, or if the A operand is negative furthermore, the B
operand is certain, the fpu topmodule will course the
operation to the expansion module. The sign will likewise be
conformed to the right esteem contingent upon the particular
case.

Table -4: divider Results

Parameters With pipelining

 45nm 32nm

Power (mW) 30.34 16.5

Area (µm2) 72504 20974

Timing (ps) 3800 3200

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 02 | Feb -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 611

Fig 6: Top module

4. CONCLUSIONS

 In this paper different number arithmetic modules are
actualized and after that different relative investigations are
finished. At last these individual squares are clubbed to make
Floating point based ALU in a pipelined way to minimize the
power and to expand the working recurrence in the
meantime. These relative examinations are done on Altera
and Xilinx [1] both. Recreation results are confirmed
hypothetically. Verilog HDL) is utilized to plan the entirety
ALU piece. In existing configuration, total power is 30.34 mW
in 45nm technology and 16.5 in 32nm technology that is
0.0178 times less when appeared differently in relation to the
proposed arrangement the working recurrence is 0.26GHz
and 0.31GHz.

ACKNOWLEDGEMENT
We acknowledge the help of Prof. S Ravi who guided us
helped a lot to get idea and methodologies to do this
project. We are also thanking our program chair Prof.
Harish Kittur .We are indebted to our lab assistant Prof.
Karthikeyan and all other faculties of VLSI System
department.

REFERENCES

[1] Rajit Ram Singh, Asish Tiwari, Vinay Kumar Singh,

Geetam S Tomar, “VHDL environment for floating point

Arithmetic Logic Unit ALU design and simulation”,

International Conference on Communication Systems and

Network Technologies, 2011

[2] H. Yamada, T. Hottat, T. Nishiyama, F. Murabayashi, T.

Yamauchi, and H. Sawamoto, “A 13.3ns Double-precision

Floating-point ALU and Multiplier”, IEEE International

Conference on Computer Design: VLSI in Computers and

Processors, 1995

[3] Manisha Sangwan, A Anita Angeline, “design and

implementation of single precision pipelined floating

point co-processor”, International Conference on

Advanced Electronic Systems (ICAES), 2013

[4] Getao Liang, JunKyu Lee, Gregory D. Peterson, “ALU

Architecture with Dynamic Precision Support”,

Symposium on Application Accelerators in High

Performance Computing, 2012

[5] Rathindra Nath Giri, M.K.Pandit, “Pipelined Floating-Point

Arithmetic Unit (FPU) for Advanced Computing

Systemsusing FPGA”, International Journal of

Engineering and Advanced Technology (IJEAT), 2012

[6] Geetanjali Wasson, “IEEE-754 compliant Algorithms for

Fast Multiplication of Double Precision Floating Point

Numbers”, International Journal of Research in Computer

Science, 2011

[7] Prof. W. Kahan, “IEEE Standard 754 for Binary Floating-

Point Arithmetic”, Lecture Notes on the Status of IEEE

754, 1997

[8] Mamu Bin Ibne Reaz, Md. Shabiul Islam, Mohd. S.

Sulaiman, “Pipeline Floating Point ALU Design using

VHDL”, IEEE International Conference on Semiconductor

Electronics ICSE, 2002

[9] Kui YI, Yue-Hua DING, “32 bit Multiplication and Division

ALU Design Based on RISC Structure”, International Joint

Conference on Artificial Intelligence, 2009

[10] Florent de Dinechin, Hong Diep Nguyen, Bogdan Pasca,

“Pipelined FPGA Adders”, International

Conference on Field Programmable Logic and

Applications, 2010

[11] Alok Baluni, Farhad Merchant, S.K. Nandy, S.

Balakrishnan, “A Fully Pipelined Modular Multiple

Precision Floating point Multiplier With Vector

Support”, International Symposium on Electronic

System Design, 2011

[12] Prashanth B.u.v P.Anil Kuma, .G Sreenivasulu, “Design &

Implementation of Floating point ALU on a FPGA

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4053
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4053
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4053
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4053
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8641
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8641
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8641
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8641

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 02 | Feb -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 612

Processor”, International Conference on Computing,

Electronics and Electrical Technologies [ICCEET], 2012

[13] Jinde Vijay Kumar, Boya Nagaraju, Chinthakunta

Swapna, Thogata Ramanjappa, “Design and

Development of FPGA Based Low Power Pipelined 64-

Bit RISe Processor with Double Precision Floating Point

Unit”, International Conference on Communication and

Signal Processing, 2014

[14] Jean Pierre David, “Low Latency Solver for Linear

Equation Systems in Floating Point Arithmetic”,

International Conference on ReConFigurable

Computing and FPGAs (ReConFig), 2015

[15] Romesh M. Jessani and Michael Putrino, “Comparison of

Single- and Dual-Pass Multiply-Add Fused Floating-

Point Units”, IEEE transactions on computers, 1998

[16] Zhaolin Li, Xinyue Zhang, Gongqiong Li, Runde Zhou,

“Design of A Fully Pipelined Single-Precision Floating-

Point Unit”, International Conference on ASIC, 2007

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7390332
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7390332
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7390332
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4415535

