
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 12 | Dec 2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1860

Energy Efficient Monet for Malware Detection System for Android

Smartphones

Shyam S. Gupta1, Dr. Sanjay Jain2

1Research Scholar, SJJTU, Jhunjhunu
2Ph. D Guide, SJJTU, Jhunjhunu

---***--
Abstract - The Android OS based Smartphones has
significant demand in the mobile market because it has
amazing applications support. In the smartphones, there is
two research problems such as energy efficiency and malware
detection. In the smartphone’s applications needs the
significant amount of energy for malware scanning and
processing at runtime. The smart phones have limited battery
backup, there is need to energy minimization approach using
many applications. Malwares are a huge threat to mobile
security, therefore it must have efficient malware detection
system. In the literature above both problems are
independently studied, and in this paper, we are presenting the
EEMonet hybrid approach in which aim is to defend against
different types of android malware and less energy
consumption performance. For malware detection, approach
is consisting of backend server and client. The client model is
nothing but in-device app for monitoring behavior and
generating the signature based on new interception methods.
The backed server is doing the task of large scale malware
detection. This approach combines “static logic structures”
and “dynamic runtime information for malware detection. For
energy efficiency, we are designing an algorithm that adds
sophisticated energy-aware computation offloading
capabilities to Android apps. The proposed method monitors
device and application status and then decides where code

should be executed automatically.

Key Words: Malware detection, Android, Runtime
behaviour, Mobile computing, Energy management,
Distributed computing.

1. INTRODUCTION

ANDROID is a mobile operating system from Google and it
powered mobile devices dominate around 78:7 % of the
smartphone OS market in the first quarter of 2016. Android
applications (apps for short) can be downloaded not only
from the Google’s official market Google Play, but also from
third-party markets. Although Google Play scans any
uploaded apps to reduce malware, other markets/sites
usually do not have sufficient malware screening, and they
become main hotbeds for spreading Android malware. As a
result, Android attracts millions of malware. It is reported
that 97 % of mobile malware is on the Android platform.
Broadly speaking, there are two types of in-device malware
detection systems. The first one is to perform static malware
detection. This type of systems uses static information such
as API calling information and control flow graphs to

generate signatures for detection. For example, anti-virus
engines will scan files in apps after their installation.
However, studies have shown that these types of anti-virus
engines can be easily bypassed using transformation attacks
(i.e. code obfuscation techniques like package name
substitution and reflection technique). Furthermore,
sophisticated signature generation and signature matching
techniques based on control flow finding incur considerable
computation overhead, and consume energy on mobile
devices which have limited battery resource, preventing
them from being adopted as in-device detection systems.
The second type of in-device detection system is the dynamic
intrusion prevention system, as seen in several products and
research studies. These systems work in the background and
monitor apps at runtime. Once they discover any suspicious
behavior, a notification will pop up to alert the users. Note
that suspicious behaviors are usually based on sensitive
APIs. Most benign apps (e.g., Text message management
apps) may also invoke these APIs (e.g., sending text message
API) for legitimate reasons. Therefore, this type of systems
may introduce false alerts and makes intrusion notifications
annoying and less preferable. Moreover, a study also shows
that existing products in the market can be easily
circumvented.

According to a survey, it was reported that over 98 % of new
malware samples are in fact derivatives (or variants) from
existing malware families. These malware variants use more
sophisticated methods like dynamic code loading, manifest
cheating, string and call graph obfuscation to hide
themselves from existing detection systems. Although these
techniques can help malware to hide their malicious logic,
we observe that the “dynamic behaviors” of malware’s core
functionalities, such as unauthorized subscription of
premium services or privilege escalation at runtime, remain
unchanged. The runtime behaviors of a new malware variant
and its earlier generation are usually very similar. A
detection system based on runtime behaviors of malware
will be able to detect more malware and their variants more
reliably. In addition, the static structures of the malware are
often similar within a malware family. However, battery life
has become one of the biggest obstacles for mobile
device advancements. Performance demanded by
smartphones and tablets is increasing at a much faster
rate than technological improvements in battery capacity.
The need for increased performance of mobile devices
directly conflicts with the desire for longer battery life. One
popular technique to reduce energy consumption of mobile
devices is computation offloading in which an application

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 12 | Dec 2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1861

reduces energy consumption by delegating code execution to
other devices. Traditionally, computations are offloaded to
remote, resource-rich servers Selection of a proper
offloading strategy can reduce power consumption and
simultaneously enhance mobile device performance.

2. OBJECTIVE OF THE STUDY

The present study tries to show Energy Efficient Monet for
Malware Detection System for Android Smartphones.

3. THE REVIEW

In this chapter, we are presenting the different way those are
presented to mine high utility item sets effectively. Mobile
devices have limited resources such as battery capacity,
storage, and processor performance. Computation offloading
is an effective method to alleviate these restrictions by
sending heavy computations to resourceful servers and
receiving results from these servers. Many issues related to
computation offloading have been investigated in the past
decade, including feasibility of offloading, offloading
decisions, and development of offloading infrastructures. Jade
was built upon previous research regarding program
partitioning, code offloading, and remote execution. In this
section, we provide an overview of proposals by these
researches and how they relate to Jade.

Cuervo et al. Proposed MAUI, a system that enables energy-
aware offloading of mobile code to the infrastructure. MAUI
enables developers to produce an initial partitioning of their
applications by annotating methods and/or classes as
remotable. At runtime, the MAUI solver decides which
remotable methods should execute locally and which should
execute remotely. Unlike MAUI, Jade provides a sophisticated
programming model with a full set of APIs, so developers
have total control on: how application is partitioned, where
code is offloaded and how remotable code interacts with local
code. In Jade, dependencies do not exist between remotable
tasks, the profiler and optimizer do not need to analyze
the whole program, thereby, energy cost of program profiling
and cost model calculation is lower than MAUI.

Chun et al. proposed Clone Cloud, an application partitioner
and execution runtime that enables unmodified mobile
applications running in an application-level virtual machine
to seamlessly offload part of their execution from mobile
devices onto device clones operating in a computational
cloud. In Clone Cloud, threads must be paused, all states of
the threads must be transferred to the server, and then
threads resume on the server in order to offload
computation. Offloading is expensive, however, especially
when the client and server are both resource constraint
mobile devices. In contrast, code offloading in Jade system is
lightweight. Remotable objects are serialized, transferred,
and de-serialized, resulting in much lower overhead
compared to thread migration. Proposed approach
framework and design.

3.1 Problem Definition
Now days use of android operating system (OS) based
mobiles is growing and captured around 1/3 of mobile
market. In android, there is variety of apps already developed
and still daily number of new apps has been introduced. Such
android apps can easily download from the Google play store
as well as from other third party stores. The Google play store
supporting the apps scanning methodologies during their
uploading process in order to reduce the malwares, however
the third party stores may not be equipped with such
provisioning and hence they leads to android malware
spreading. Therefore it is must to have methodology to
perform the detection of android malwares from end users
mobiles during the apps installations or working. There are
two approaches of malware detection from users mobile such
as static malware detection and dynamic intrusion detection
systems. In literature under these two categories number of
solutions introduced, but suffered from the limitations in
terms of efficiency and scalability. Such methods are not
supporting to scan the runtime behaviors of malware in
order to detect them successfully. Recently, another hybrid
solution introduced in which “runtime behavior” with “static
structures” is combined to detect malware variants
efficiently, this method called as Monet. The problem
identified with Monet is power consumption or energy
efficiency is not addressed while malware detection.

3.2 Proposed System Architecture

In this paper, we are presenting the modified version of
Monet approach called EE-Monet which stands for energy
efficient Monet with goal of user-oriented behavior-based
malware variants detection system for android with
minimum power consumption. In Monet, we studied that it
was introduced to detect the malware variants as well as
defend against the transformation attacks. Basically Monet is
generating the signature of runtime behavior composed of
RBG (runtime behavior graph) and SSS (suspicious system
call set) in order to accurately present the malware runtime
behavior. We further modifying the Monet to EEMonet in
which we are using the Jade system. Jade is a system that
adds sophisticated energy-aware computation offloading
capabilities to Android apps. This will helps to minimize the
system overhead in terms of energy consumption while
malware scanning process.

Figure 1. System Architecture

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 12 | Dec 2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1862

4. ALGORITHMS

4.1 Input Set

Android application for malware detection.

4.2 Malware Detection Algorithm

STEP-1 START
STEP-2 Input Android App.
STEP-3 APK file at client side.
STEP-4 Static behavior graph of app.
STEP-5 Static behavior graph generation.
STEP-6 Get runtime information of app.
STEP-7 Apply runtime information collection.
STEP-8 Dynamic behavior graph of app.
STEP-9 Intrusion detection.
STEP-10 Signature graph.
STEP-11 Signature generation.

STEP-12 Signature send to the server.
STEP-13 Server send detection result.
STEP-14 STOP

4.3 Code Offloading Algorithm

STEP-1 START

STEP-2 Records code information in the offloaded
code table (Table 1).
STEP-3 Offloads the code to the server.
STEP-4 the server receives the code and executes
it in a new thread.
STEP-5 the server sends the code back to the
client after execution is complete.
STEP-6 the client receives the code and updates
code information in the offloaded.
STEP-7 STOP

Table 1: Example of offloaded code table

4.4 Jade Programming Model

STEP-1 START

STEP-2 Profiler.

STEP-3 Program Profiling.

STEP-4 Device Profiling.

STEP-5 Optimizer.

STEP-6 Communication Manager.

STEP-7 STOP

4.5 Benchmark results

Table 2: Benchmark result

Test Baseline Monet Overhead

CPU 21043 20015 4:8 %

Memory 14201 13019 8:3 %

I/O 7334 6782 7:5 %

2D 325 311 4.00%

3D 2320 2302 0:8 %

Output set:

5. RESULT

Following graphs explain the excepted practical results for
proposed work C-IBE. The practical work is designed and
implemented using Java platform under real time cloud
deployment settings.

5.1 Accuracy Graph

 Example of offloaded code table

ID Offloaded Server Returned Result

1 TRUE 192.168.49.1 TRUE Finish

2 TRUE 192.168.49.1 TRUE Finish

3 TRUE 192.168.49.1 TRUE Finish

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 12 | Dec 2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1863

5.2. Power Consumption Graph

6. CONCLUSIONS

In this paper, we presented MONET to detect malware
variants and to defend against transformation attack. MONET
will generate a runtime behavior signature which consists of
RBG and SSS to accurately represent the runtime behavior of
a malware. Our system include a backend detection server
and a client app which is easy to deploy on mobile devices.
Our experiments show that MONET can accurately detect
malware variants and defend against transformation attacks
with only a minimal performance and battery overhead jade a
system that enables computation offloading for mobile
devices. Jade can effectively reduce energy consumption of
mobile devices and dynamically change its. Offloading
strategy according to device status. Face detection
application and a path finding application. Results showed
that jade can effectively reduce energy consumption for both
application while better their performance.

REFERENCES

1. H. Qian and D. Andresen. Extending Mobile Device’s

Battery Life by Offloading Computation to Cloud. In
Proceedings of the 2nd ACM International Conference
on Mobile Software Engineering and Systems
(MOBILESoft), 2015.

2. H. Qian and D. Andresen. An Energy-saving Task
Scheduler for Mobile Devices. In Proceedings of the 14th
IEEE/ACIS International Conference on Computer and
Information Science (ICIS), 2015.

3. H. Qian and D. Andresen. Emerald: Enhance Scientific
Workflow Performance with Computation Offloading to
the Cloud. In Proceedings of the 14th IEEE/ACIS
International Conference on Computer and Information
Science (ICIS), 2015.

4. Q. Chen, H. Qian et al. BAVC: Classifying Benign
Atomicity Violations via Machine Learning. In Advanced
Materials Research, Vols 765-767, pp. 1576-1580, Sep,
2013.

5. F. Wei, S. Roy and S. Ou. Amandroid: A Precise and
General Inter-component Data Flow Analysis
Framework for Security Vetting of Android Apps. In
proceedings of the 2014 ACM Conference on Computer
and Communications Security. 2014.

6. L. Peng, Y. Yang et al. Highly Accurate Video Object
Identification Utilizing Hint Information. In proceedings
of the International Conference on Computing,
Networking and Communications (ICNC), 2014.

7. S. Zhang, X. Zhang and X. Ou. After We Knew It:
Empirical Study and Modeling of Cost-effectiveness of
Exploiting Prevalent Known Vulnerabilities Across IaaS
Cloud. In proceedings of the 9th ACM Symposium on
Information, Computer and Communications Security
(ASIACCS), 2014.

8. D. Arp, M. Spreitzenbarth, M. H ¨ ubner, H. Gascon, K.
Rieck, andC. Siemens, “Drebin: Effective and explainable
detection of android malware in your pocket,” in Prof. of
the Network and Distributed System Security
Symposium, 2014.

9. S. Roy, J. DeLoach, Y. Li, N. Herndon, D. Caragea, X. Ou, V.
P.Ranganath, H. Li, and N. Guevara, “Experimental study
with realworld data for android app security analysis
using machine learning,” in ACSAC. ACM, 2015.

10. K. Xu, Y. Li, and R. H. Deng, “Iccdetector: Icc-based
malware detection on android,” TIFS, 2016.

11. W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A
study of android application security.” in USENIX
Security, 2011.

12. L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: statically
vetting android apps for component hijacking
vulnerabilities,” in CCS, 2012.

13. S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid:
Precise context, flow, field, object-sensitive and lifecycle-
aware taint analysis for android apps,” in PLDI, 2014.

14. C. Yang, Z. Xu, G. Gu, V. Yegneswaran, and P. Porras,
“Droidminer: Automated mining and characterization of
finegrained malicious behaviors in android
applications,” in ESORICS, 2014.

15. W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P.
McDaniel, and A. N. Sheth, “Taintdroid: an information
flow tracking system for realtime privacy monitoring on
smartphones,” Communications of the ACM, 2014.

16. M. Sun, T. Wei, and J. C. S. Lui, “Taintart: A practical
multi-level information-flow tracking system for
android runtime,” in CCS, 2016.

17. L.-K. Yan and H. Yin, “Droidscope: Seamlessly
reconstructing the os and dalvik semantic views for
dynamic android malware analysis.” In USENIX Security,
2012.

18. Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning, X. S.
Wang, and B. Zang, “Vetting undesirable behaviors in
android apps with permission use analysis,” in CCS,
2013.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 12 | Dec 2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1864

19. K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro,
“Copperdroid: Automatic reconstruction of android
malware behaviors.” in NDSS, 2015.

20. M. Lindorfer, M. Neugschwandtner, and C. Platzer,
“Marvin: Efficient and comprehensive mobile app
classification through static and dynamic analysis,” in
COMPSAC, 2015.

21. S. Bugiel, S. Heuser, and A.-R. Sadeghi, “Flexible and fine-
grained mandatory access control on android for diverse
security and privacy policies.” in Usenix security, 2013.

22. C. Wu, Y. Zhou, K. Patel, Z. Liang, and X. Jiang, “Airbag:
Boosting smartphone resistance to malware infection,”
in NDSS, 2014.

23. X. Li, H. Hu, G. Bai, Y. Jia, Z. Liang, and P. Saxena,
“Droidvault: A trusted data vault for android devices,” in
ICECCS. IEEE, 2014.

24. X. Wang, K. Sun, Y. Wang, and J. Jing, “Deepdroid:
Dynamically enforcing enterprise policy on android
devices.” in NDSS, 2015.

25. M. Sun, J. C. S. Lui, and Y. Zhou, “Blender: Self-
randomizing address space layout for android apps,” in
RAID, 2016.

