
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

1. Volume: 04 Issue: 12 | Dec-2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1593

Block-Chain Oriented Software testing approach

Ashray Kakadiya

Student, LDRP Institute of Technology and Research, Gandhinagar, Gujart

--***---
ABSTRACT - The block-chain technology presents a very
innovative and secure way of managing transactions
online. Hailed as one of the greatest inventions after the
Internet, it has taken the digital world by storm and is
disrupting many industries. In the past few years this
technology has gained enormous importance and its
application area has evolved into a wider context. The
mass adoption of block-chain based applications has
increased dramatically and a plethora of such
applications are now available for use. As a result, block-
chain based software development is also growing at a
staggering rate.

This paper acknowledges the need for software engineers
to devise specialized tools and techniques for block-chain
oriented Software testing. The aim of this paper is to
develop testing methodology for Block-chain oriented
software as currently there is no such approach available
in literature. It also highlights the challenges currently
faced as well as the approaches followed for testing such
applications in order to ensure high standards of quality.

Keywords - Block-Chain, Testing, Software testing
lifecycle, Block-chain Oriented Software.

1. INTRODUCTION

Blockchain provides users with a safe and secure way of
managing their transactions online [1]. It creates an
environment of trust without the need of any external
middle parties. It is a distributed ledger which is shared,
replicated and synchronized among the members of a
public or private peer-to-peer network. The ledger
permanently records the history of asset exchanges
amongst the members of the network in a linear and
chronological order. Every transaction recorded in the
ledger has a timestamp and unique cryptographic
signature associated with it. Once the information gets
stored in the blockchain, it cannot be changed or
tampered. All the confirmed and verified transactions are
combined into a block and chained to the most current
block to form a blockchain.

The blockchain technology presents a completely new
approach to software development. It’s decentralized
nature along with the anonymous nature of the nodes
involved further adds to the complexity of the testing
process. A traditional method of Software testing may
not be valid anymore. The immutable nature of the
blockchain further implies that if a bug goes into the
production system, it may require complete revision of

the code. Thus, using correct testing techniques and
methodologies becomes more critical in this case [2].

A primary factor that influences the level of testing is
whether the implementation is based on a public
platform like Ethereum or customized platform that is
built for an organization or consortium of organizations.
In case of a private blockchain it is somewhat easy to
simulate all the scenarios and test them internally. Since
private blockchain operates in a controlled environment
traditional testing method can prove handy. A detailed
test strategy can be designed since the functionality is
customized.

The complexity escalates when the implementation is on
a public platform. In public blockchain implementation
there is no upper limit on the nodes that can participate,
nodes can join and leave in an ad-hoc manner, consensus
may not be reached easily lowering the speed of
transactions, a hard fork may get created and many more
issues [2]. It becomes very difficult to visualize and
design test strategies and test cases covering all aspects.

In this paper, we are proposing a detailed four phases
testing lifecycle designed specially for blockchain
oriented soft-wares. Section 2 of this paper talks about
the previous work done in this field of blockchain
testing. Section 3 contains our detailed proposed
solution of Testing lifecycle. In section 4 we conclude our
paper and provide possible future works that can be
carried out further on our proposed solution. Section 5
and 6 is Acknowledgment and References used for this
paper.

2. LITERATURE REVIEW

A block chain is a form of data structure where
information is stored with some additional information
of validation. Most applications that are developed on
the block chain must guarantee data integrity and
uniqueness to ensure blockchain-based systems are
trustworthy which, in the case of block chain-oriented
Software (BOS) is that of security-critical systems.

There is a need for testing suites for BOS. General suites
include [3]: 1. Smart Contract Testing (SCT), namely
specific tests for checking that smart contracts i) satisfy
the contractor's specifications ii) comply with the laws of
the legal systems involved, and iii) Do not include unfair
contract terms. 2. Blockchain Transaction Testing (BTT),
such as tests against double spending and to ensure status

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

1. Volume: 04 Issue: 12 | Dec-2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1594

integrity. There are various tools which uses automated
testing for smart contracts which is as important as any
other kind of software testing, verifying if necessary hooks
are present so that external automated scripts can instruct
the platform, observe the outcome, and verify that the
outcome is as per expectation.

In the banking systems if we don’t have these hooks then
smart contracts functioning would be difficult. There are
now multiple smart contract testing frameworks for
Ethereum [4]. The alternative, and more recent, approach
was proposed by the people at Eris Industries, a New
York-based smart contract software design firm. They
suggested testing Ethereum contracts using other
Ethereum contracts [5]. We will still need scripted
interactions to kick the process off, but effectively the test
logic is built into the contracts themselves. Infosys issued a
white paper titled “Assuring success in blockchain
implementations by engineering quality in validation” [6].
In this paper, they discuss various challenges in testing
blockchain implementations and list out the testing phases
with the volume of tests, methodology and tools. They also
discuss test strategy across various test phases with a call-
out on the key activities.

Another paper shows design of Land Administration and
Title Registration Model Based on Blockchain Technology
[7]. In this paper, they discuss how to use blockchain
technology and propose a model to perform testing for
Verification using Markov Chain. Markov chain is a widely
recognized approach to guarantee the correctness of a
system by checking that any of its behaviors is a model for
a given property.

As Blockchain Oriented Software projects work with the
blockchain technology which is distributed in nature,
testing is done in isolation and requires proper mocking of
objects capable of effectively simulate the blockchain. The
bitcoin [8] is the first and most popular cryptocurrency. It
is a blockchain oriented software and has been receiving a
lot of attention [9]. One of its technical features is that it
enables reliable transactions without a centralized
management mechanism even if there are unreliable
participants in the network, and this feature is obtained by
the invention of blockchain technology.

In our research paper, we plan on creating a complete
Software testing life cycle to test BOS projects like Bitcoin.
Unlike the methods discussed above which focuses on
testing only particular key functionalities like Smart
Contracts and double spending, we propose a new
Software Testing Life Cycle which will test the software in
all perspectives.

3. PROPOSED SOLUTION

In our proposed solution, we plan on creating a complete
Software testing life cycle to test BOS projects like Bitcoin
described above. Unlike the implemented works, which

focuses on testing only particular key functionalities like
Smart Contracts and double spending, we propose a new
Blockchain Oriented Software Testing Life Cycle which will
test the software in all perspectives. The testing lifecycle
has four phases as shown in Fig 1.

3.1 Phase 1: System Overview

The first phase of our BOS testing lifecycle is the system
overview phase. We suggest that there should be an
early involvement of the testers in the SDLC so that they
have a better idea of all components involved and also
about which team is reaponsible for which component.
Then a component map is generated. This component
map contains all the components and sub components of
the complete system including all the interfaces. It gives
a good idea of the overall working of the system.

From this complete componet map, a system component
map is generated, which contains the shortlisting of all
the components that pertain to blockchain technolody.
The components shortlisted are again mapped into a
component diagram and this defines the scope of testing.
Once the scope of testing is define, the whole team has a
clear idea of what is to be tested and which team is
responsible for which component. The output of phase 1
is System component map determining the testing scope.

3.2 Phase 2: Test Design

In phase 2, a detailed level test strategy needs to be
designed specific to blockchain. We identify the key
components that need to be checked in the system. We
are using a model called hyper ledger composer to test
the block chain oriented software’s. It has its own
modeling language. The output of the second phase will
be a detailed level test strategy.

3.2.1 Model of structure of blocks, transactions
and contracts is designed for testing

Hyper ledger Composer includes an object-oriented
modeling language that is used to define the domain
model for a business network definition. Hyper ledger
Composer CTO file is composed of the following
elements:1.A single namespace. All resource declarations
within the file are implicitly in this namespace. 2.A set of
resource definitions, encompassing assets, transactions,
participants, and events. 3.Optional import declarations
that import resources from other namespaces.

The CTO modeling language is tightly focused with just a
few keywords. The model for your business network
resides in a file that has a .cto file extension, and
contains definitions for the following elements:
namespace, resources, imports from other namespaces,
as required. Model the business network : Hyper ledger
Composer only allows working with one model at a time.
Instantiate the model: The Assets and Participants from

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

1. Volume: 04 Issue: 12 | Dec-2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1595

the model appear on screen, saying the registry is empty.
when the business network is first created, both the
asset and participant registries are empty. You need to
create asset and participant instances, and those
instances will reside in the registry.

The following steps show how to instantiate and test the
model. •Test the business network: Models are great at
acting as a sort of blueprint for the application you are
building, but a model of a thing is not much good unless it
results in an actual thing. For the business model, thing
that useful is need to be instantiated. •The Asset and
Participant registries: It's time to instantiate the resources,
and their instances will live in their respective registries.
So, asset instances go in the asset registry, and participant
instances go in the participant registry.

The perishable-network model includes a transaction
implemented as a JavaScript function in the library
module. That you can use to instantiate the model and
create entries in the asset and participant registries. It is
provided as a way to get the business network from the
template up and running more quickly than if you entered
the model by hand. It does three things:

1) Creates instances of all the assets and participants from
the model.

2) Sets property values on those instances.

3) Stores the instances in their respective registries.

3.2.2 Create use cases for various interactions
with the system and endpoints.

Along with the hyper ledger we are also going to create
use cases and generate sequence diagrams corresponding
to use cases and check if requirements are met. As we
know that we can identify the missing requirements/steps
easily with the sequence diagram flow, since each activity
in life line are related in performing the activities. So,
missing requirements can cease to happen the activities
and help us to identify and modify use cases.

3.2.3 Testing block-chain related NFRs

Be agile : NFR testing is planned from the beginning of the
project. For example, if there is a requirement like
application should handle heavy traffic , say 1000 requests
per second. Then we use the technology like multi-cast
and send data across network to several users at the same
time and very the application handling.

Plan, Prioritize : Begin agile itself isn’t enough. Planning
is important regarding which NFR test should be
performed when we get constrained by time or resources.

Setup : It is important to have proper environment. For
example, when a system has to handle 100tps with 2 cpu
and 4 cores, But in the production we have 4 cpus and 8

cores in these circumstances an test can result two
outcomes. 1) you will get good results 2) We will get bad
results-which is waste of time and manpower assuming
some issue with the app.

Record : Recording NFR is important, because we can
prove our system performance and go back in future when
we learn something new.

3.3 Phase 3: Test Planning

In this phase, we get a low level view of how every form of
testing is to be conducted is decided to have an estimate of
number of tests at every level and also the amount of
coverage. We check the system availability or we can say
testing environment availability. If system is not available
then alternative testing strategies need to be planned.
Alternative test strategy involves setting up a private
blockchain for testing.

There has to be an estimate on coverage and number of
tests that will be performed It is mandatory to determine
the volume of tests amd test tools and automation. Every
level of testing is considered and its Testing
Methodology and tools and finalized.

Table 1 gives an example of every testing phase/level
along with it’s recommended metholody and tools. Table
2 gives an estimate of Volume of tests that are performed
at every testing phase or testing level.

Table 1. Testing levels with methodology and tools

Testing Level Methodology and tools

Unit Testing
Test Driven Development (Mock
Stubs)

System Testing
Verifying contracts, blocks and
updating, etc. through scripts
(Black box)

Integration

Testing

TestNet (used primarily for testing
Bitcoin-related applications)

Functional/UI
Testing

Automated tests for front end
(Selenium scripts)

Table 2. Testing Levels with Volume of tests

Testing Level Volume of Tests

Unit Testing 2500

System Testing 1000

Integration

Testing
275

Functional/UI
Testing

50

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

1. Volume: 04 Issue: 12 | Dec-2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1596

Use Cases that are designed in the second phase are
mapped to the tests mentioned above. This makes sure
that we have covered all the test scenarios and have
included all the user requirements inclusion of user
scenario. Output of phase 3 is a Final test strategy and a
document of test cases.

3.4 Phase 4: Test Execution and Result
Verification

The fourth phase is the last phase of the proposed
Blockchain oritented software testing life cycle. It
involves executing all the tests at every testing level with
the documented metholody and tools from phase 3.
Execution can be ideally automated with scrippting
which follows a test driven development approach on a
suitable framework.

Various key activites that need to be focused in this
phase are low level verification, and validation of blocks,
Smart Contracts and Transactions. We also need to test
all the third party interfaces that are used in the system
as well as the user interface and functional flows.

The results then need to be consolidated, analyzed and
verfied back to the business side. There has to be a bug

report which lists all the defects identifies as well as a
detailed test report stating passed and failed test
executions.

Table 2. Testing phase with methodology and tools

Testing
Phases

Methodology and tools

Unit Testing
Test Driven Development (Mock
Stubs)

System Testing
Verifying contracts, blocks and
updating, etc. through scripts
(Black box)

Integration

Testing

TestNet (used primarily for testing
Bitcoin-related applications)

Functional/UI
Testing

Automated tests for front end
(Selenium scripts)

The output of Phase 4 is the test results and defects
report which is sent to the team for further processing.
This cycle can be carried out until the system works as
expected and there are no critical errors found during
testing.

Fig 1: Proposed BOS Testing Lifecycle

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

1. Volume: 04 Issue: 12 | Dec-2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1597

4. CONCLUSION AND FUTURE WORK

In the present work, we focused on the most evident issues
of state-of-art blockchain-oriented software development.
In addition, we read multiple blogs and articles
highlighting the issues present in Blockchain oriented
software testing. On the basis of the results of the analysis,
we proposed new directions for blockchain-oriented
software engineering, focusing on collaboration among
large teams, testing activities, and specialized tools for the
creation of smart contracts. We also advocated the need
for new professional roles by having a dedicated software
tester from the start of testing lifecycle and also suggested
enhanced security and reliability by testing key features of
blockchain as well as overall system.

5. ACKNOWLEDGMENTS

We would like to express our sincere gratitude to our
professor Dr. Ahmed Salem, for the continuous support of
our study and research on this topic, for his patience,
motivation, enthusiasm, and immense knowledge. His
guidance helped us in all the time of research and writing
of this paper.

6. REFERENCES

[1] Hiroki Watanabe, Shigeru Fujimura, et.al,

“Blockchain Contract: A Complete Consensus using
Blockchain”, 2015 IEEE 4th Global Conference on
Consumer Electronics (GCCE).

[2] The blockchain challenge nobody is talking about:
http://usblogs.pwc.com/emerging-technology/the-
blockchain-challenge/

[3] Alex Norta et.al, "Conflict-Resolution Lifecycles for
Governed Decentralized Autonomous Organization
Collaboration”, St.Petersburg, Russian Federation ©
2015 ACM.

[4] Simone Porru et.al, 2017. Blockchain-oriented
Software Engineering: Challenges and New
Directions”, 39th IEEE international conference on
Software Engineering Companion

[5] Ethereum: https://blockgeeks.com/guides/what-is-
ethereum/

[6] Testing of Blockchain:
http://www.bcs.org/content/conWebDoc/56020

[7] Infosys Whitepaper: https://www.infosys.com/IT-
services/validation-solutions/white-
apers/Documents/blockchain-implementations-
quality-validation.pdf

[8] Kombe, Cleverence & Manyilizu, Majuto & Mvuma, A.
(2017). Design of Land Administration and Title
Registration Model Based on Blockchain Technology.
Journal of Information Engineering and Applications.
7. 8-15.

[9] S. Nakamoto, “Bitocoin: A Peer-toPeer Electronic
Cash System,” https://bitcoin.org/bitcoin.pdf, 2008.

[10] J. Bonneau et al, “SoK: Research Perspectives and
Challenges for Bitcoin and Cryptocurrencies,” in
36th IEEE Symposium on Security and Privacy, May
18-20, 2015.

[11] Elli Androulaki, Ghassan O Karame, Marc Roeschlin,
Tobias Scherer, and Srdjan Capkun. 2013. Evaluating
user privacy in bitcoin. In International Conference
on Financial Cryptography and Data Security.
Springer, 34–51.

[12] Giuseppe Ateniese, Antonio Faonio, Bernardo Magri,
and Breno De Medeiros. 2014. Certified bitcoins. In
International Conference on Applied Cryptography
and Network Security. Springer, 80–96.

[13] Marcella Atzori. 2015. Blockchain technology and
decentralized governance: Is the state still
necessary? (2015).

[14] Tobias Bamert, Christian Decker, Roger
Wattenhofer, and Samuel Welten. 2014. Bluewallet:
The secure bitcoin wallet. In International Workshop
on Security and Trust Management. Springer, 65–80.

[15] Roman Beck, Jacob Stenum Czepluch, Nikolaj Lollike,
and Simon Malone. 2016. Blockchain-the Gateway to
Trust-Free Cryptographic Transactions..In ECIS.
ResearchPaper153.

[16] Joppe W Bos, J Alex Halderman, Nadia Heninger,
Jonathan Moore, Michael Naehrig, and Eric Wustrow.
2014. Elliptic curve cryptography in practice. In
International Conference on Financial Cryptography
and Data Security. Springer, 157–175.

[17] Christian Decker and Roger Wattenhofer. 2014.
Bitcoin transaction malleability and MtGox. In
European Symposium on Research in Computer
Security. Springer, 313–326.

