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Abstract - – In this paper, an isotropic cylindrical shell is 
studied under the external pressure. For and uniformly 
distributed load and sinusoidal load at simply supported end 
conditions, cylindrical shell is studied for its deflection and the 

von-Mises stresses are analyzed. Analytical modeling is based 
on first order shear deformation theory (FOST) and a finite 
element computational tool ABAQUS [2] is used to model the 
isotropic cylindrical shell. 
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1.INTRODUCTION  
 
Shells are commonly used in many engineering structures, 
such as aerospace, automotive and submarine structures. 
Isometric shells are getting more attention recently. Because 
of the simplicity of shell theories, it is favorable to analyze 
shell structures with shell theories instead of three 
dimensional (3D) theories of elasticity. Shell theories redeem 
the difficulty of shell analyses by employing certain 
assumptions on the behavior of displacements along the 
thickness direction. For instance, First order expansion of in-
plane displacements leads to First order shear deformation 
theories (FSDTs). 
 
A difficulty rise and appears in both in strain displacements 
and stress resultants in the equation of derivation of basic 
equation of shell. The term was neglected by first analyst of 
composite thin shells which is understandable for thin shells 
.Although the importance of the inclusion of the term has 
been tested for the thicker shells and proves to be essential. 

 
2.  Formulation of FSDT  
 
2.1 Introduction 
 
The FSDT developed by Mindlin [12] accounts for the shear 
deformation effect by the way of a linear variation of the in-
plane displacements through the thickness. It is noted that 
the theory developed by Reissner [13] also accounts for the 
shear deformation effect. However, the Reissner theory is 
not similar with the Mindlin theory like erroneous 
perception of many researchers through the use of 
misleading descriptions such as “Reissner-Mindlin plates” 
and “FSDT of Reissner”.The major difference between two 
theories was established by Wang et al. by derivating the 
bending relationships between Mindlin and Reissner 
quantities for a general plate problems. Since the Reissner 

theory was based on the assumption of a linear bending 
stress distribution, its formulation will inevitably lead to the 
displacement variation being not necessarily linear across 
the plate thickness. Thus, it is incorrect to refer to the 
Reissner theory as the FSDT which implies a linear variation 
of the displacements through the thickness. Another 
difference between two theories is that the normal stress 
which was included in the Reissner theory was omitted in 
the Mindlin. 
 
The FSDT was used to model FG shells. Reddy and Chin [14] 
studied the dynamic response of FG cylinders and plates 
subjected to two different types of thermal loadings using 
the FSDT and the finite element method. 
 

2.2 Definition of Displacement field 
 

                                                                                                                             

(1a) 
  

  

In the above relations, the terms and  are the 

displacements of a general point ( ) in the domain in x, 

y and z directions respectively. The parameters  are 

the inplane displacements and  is the transverse 

displacement of a point (x, y) on the element middle plane. 

The functions are the rotations of the normal to 

the element middle plane about y- and x-axis respectively. 
 
2.3 Strain displacement relation 
 
With the definition of strains from the linear theory of 

elasticity, assuming , the general strain-

displacement relations in the curvilinear co-ordinate system 
are given as follows: 
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Substituting the expressions for displacements at any point 
within the space given by Eqs. (1a) for the displacement 
models considered herein, the linear strains in terms of 
middle surface displacements, for each displacement model 
can be obtained as follows: 
 

  

  

  

  

  

  

Where,   

2.4 Stress-strain relations and stress resultants 
 
Assuming the principal material axes (1,2,3) and the shell 
axes (x,y,z) in the curvilinear co-ordinate system ,the three 
dimensional stress-strain relations for an cylindrical shell 
with reference to the principal material axes for the theory 
to be developed based on the displacement are defined as 
follows: 
 

                                                                         

(2a) 
 
Where, 
 

    ,  , 

   ,       , 

  ,      ,     

 
These equations in compacted form may be written as 
 

 
 
As mentioned earlier, the relations given by Eq. (2a) are the 
stress-strain constitutive relations for the cylindrical shell 
referred to shell’s principal material axes (1,2,3). The 
principal material axes of shell may not coincide with the 
reference axes of the shell (x,y,z).It is therefore necessary to 
transform the constitutive relations from the shell’s material 
axes (1,2,3) to reference axes (x,y,z).This is conveniently 

accomplished through the transformations .The final 
relations are as follows: 
 

                                                                 (2b) 
 
These equations in compacted form may be written as  
 

 
 
in which the coefficients of the Q matrix, called as reduced 
elastic constants are defined in Appendix A. 
 

The components of the strain vector   and the 

corresponding components of the stress- resultant vector   

are defined as follows: 
 

 
 

    

  

  

 
 
2.5 Equilibrium equations 
 
For equilibrium equations, the total potential energy must be 
stationary and using the definitions of stress-resultants and 
mid-surface strains stated in above sections principal of 
virtual work yields     
 

 
 
Where, U is the strain energy and W represents the work 
done by external forces. These are evaluated as follows: 
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    (3a) 
 
Integration through thickness and by substituting in terms of 
strains and introducing stress resultants, the above relations 
transform in the following form 
   

                                                                (3b) 
 
In the above equation is the distributed transverse load. 
The governing equations of equilibrium can be derived from 
eq. (3b)  by integrating the displacement gradients in mid 
surface strains by parts and setting the coefficients of 
derivatives of mid-surface displacements to zero separately. 
Thus one obtains the following equilibrium equations. 
 

                                                     

  

                                                                                                

(3c) 

  

  

 
In addition following line integrals are also obtained 
 

               (3d) 
 
2.6 Closed form solutions 
 
Sinusoidal variation of transverse load is considered as 
under: 
 

 

,   in which a and b are the dimensions of 

shell middle surface along the x and y axes respectively. 
 
The exact form of spatial variation of mid-surface 
displacements is given by 
 

  

  

                                                                                                 

(4a) 

  

  

 
3. Analysis in ABAQUS 
 

 To find the dimensionless displacements of an 
isotropic cylindrical shells having following 
properties. 
 

a/b= 1,   , 𝞾=0.25 

 
1. Find displacement for a/h=20 and for different 

ratios of 
 

a) a/R= 0.5 
b) a/R=1 
c) a/R=2 

 
2. Find the displacement for a/h=10, and for different 

ratios of 
a) a/R= 0.5 
b) a/R=1 
c) a/R=2 

 

 
 

Fig-1 Modeling in ABAQUS 
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Fig-2 Shows stresses and deflection 
 

Table 1. Non-Dimensional transverse deflection for 
longitudinal edges simply supported cylindrical shell 

under uniformly distributed loading with a/h = 20. 
[ ] % error w.r.t. FSDT results 
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Fig.3. Non- dimensional transverse displacement vs. FSDT 
results having a/h = 20. 

 
 
 
 
 
 
 

Table 2. Non-Dimensional transverse deflection for 
longitudinal edges simply supported cylindrical shell 

under uniformly distributed loading with a/h = 10. 

 
a/R 3D FSDTQ FSDT ABAQUS 

(present) 
0.5 40.875 40.956 40.699 41.1 

 
1 28.415 28.333 28.009 29 

 
2 12.242 12.108 11.972 11.52 

 
[ ] % error w.r.t. FSDT results 
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 Fig.4. Non- dimensional transverse displacement vs. FSDT 

results having a/h = 10. 
 

3. CONCLUSIONS 
 
It is concluded that for a simply supported isotropic 
cylindrical shell subjected to uniformly distributed load, for a 
constant ratio of a/central displacement decreases as a/R 
ratio increases.  
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