
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 11 | Nov -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1928

Algorithm Of Dynamic Programming For Paper-reviewer

Assignment problem

Nguyen Dinh Dung1, Nguyen Huu Cong2, Nguyen Tuan Anh3

1,2,3 Thai Nguyen University, Thai Nguyen, Viet Nam
---***---
Abstract - In this paper, we give paper-reviewer assignment
problem based on paper keywords and database of reviewer
keywords. We consider string matching algorithms as Brute
Force Algorithm and KMP Algorithm to solve this problem,
these algorithms seem to be effect less in case changing of
phrase form. So, our algorithm was developed using dynamic
programming to find suitable reviewers for papers. We give
an expertise distance that is assignment criteria for paper-
reviewer assignment and determined by edit distance.

Key Words: Pattern matching, Dynamic programming, Edit
distance, paper reviewer assignment.

1. INTRODUCTION

Peer review is a common task to people such as
software developers, conference organizers, journal editors,
grant administrators and educators. The paper-to-reviewer-
assignment process aims to find the most expert reviewers
for each submission. Obtaining high quality reviews is of
great importance to the quality and reputation of an journal
or a conference. The assignment of each paper to a set of
suitable reviewers requires knowledge about both the topics
studied in the paper and reviewers’ expertise. This problem
isn't a new problem, it has been faced and solved many times
It has attracted considerable interest from different domains.
Several works have been made for conference paper-
reviewer assignment by using methods such as mining the
web [2], latent semantic indexing [3], probabilistic topic
modeling [4], integer linear programming [5], minimum cost
flow [6] and hybrid approach of domain knowledge and
matching model [7]. Recently, Tayal, Saxena, Sharma,
Khanna, and Gupta put forward a new method for solving
reviewer assignment problem in government funding
agencies [8], Li and Watanabe proposed an automatic
paper-to-reviewer assignment approach based on the
matching degree of the reviewers [9], Long, Wong, Peng, and
Ye solved a conference paper assignment problem by
maximizing the topic coverage of the paper-reviewer
assignment [10].

A correct and meaningful assignment can be
performed only if reviewers and authors provide detailed
information about their interests, respectively papers.
Keywords are commonly used for expressing areas of
interest and describing papers in details. In this paper, we
study the problem of assigning a single journal paper P to a
reviewer who is chosen from a set of reviewers. We propose
the problem of expertise matching and presented algorithm

relies on keywords provided by authors and reviewers of
papers. We have applied the proposed algorithm to
support the assignment of papers to reviewers for an
journal.

The goal of our Reviewer Assignment Problem
(RAP) is to find the best assignment such that the objective
is minimized subject to the constraints. RAP is formally
defined as follows:

Let },...,,{ 21 iimiii RRRR , is a set of keywords chosen by

the Ri – reviewer (i = 1,2,…, M); },...,,{ 21 nRPPP is a set

of keywords, describing the P - paper; an expertise distance
is used to find the most suitable reviewers for each paper.
The expertise distance is defined as: if P - paper has at least
one keyword in common with a Ri -reviewer, then the

expertise distance D(Ri,P) is defined to be
Max

c
d i 1
 .

Where, ci is number of keywords that P - paper has in
common with Ri - reviewer; Max is a positive arbitrary large
constant, Max is choosen such that Max >> ci; d is a positive
constant (0<d<1). If a paper has at least one keyword in
common with a reviewer, then the paper will have a
reviewer who can be assigned to it.

Definition 1:

Given },...,,{ 21 MRRRR , },...,,{ 21 nPPPP . RAP finds

Rk – reviewer such that:

kkk

iMik

DRdPRD

PRDPRD

;),(

);,(min),(1
 (1)

 Where, Dk is a domain that Rk satisfies the actual
constraints (actual constraint may be busy reviewers,
reviewers who already have enough papers to review i.e.).

 There are some methods of finding paper keyword in
common with a reviewer as exact string matching algorithms
and approximate string matching algorithms (often
colloquially referred to as fuzzy string searching). We will
consider algorithms based on different approaches,
including Brute Force [11], Boyer-Moore approach [15, 16],
Knuth-Morris-Prat string matching [12] and dynamic
programming [11,13,14].

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 11 | Nov -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1929

2. EXACT STRING MATCHING ALGORITHMS

 In computer science, string searching algorithms,
sometimes called string matching algorithms, are an
important class of string algorithms that try to find a place
where one or several strings (also called patterns) are found
within a larger string or text.

 Given a pattern string S=S0S1…Sm and a text string
T=T0T1…Tn (m ≤ n), both the pattern and searched text
are arrays of elements that are on an alphabet Σ (e.g. the set
of ASCII characters, the set of bytes [0..255], etc.).

 When we come to string matching the most basic
approach is what is known as brute force [11], which means
just to check every single character from the text to match
against the pattern. The principles of brute force string
matching are quite simple. We must check for a match
between the first characters of the pattern with the first
character of the text. If they don’t match we move forward
the second character of the text. Now we compare the first
character of the pattern with the second character of the text.
If they don’t match again we move forward until we get a
match or until we reach the end of the text. In case they
match we move forward the second character of the pattern
comparing it with the “next” character of the text, If case a
character from the text match against the first character of
the pattern we move forward to the second character of the
pattern and the next character of the text. This algorithm is
slow that its complexity is O(nm). In brute force matching we
checked each character of the text with the first character of
the pattern. In case of a match we shifted the comparison
between the second character of the pattern and the next
character of the text. The problem is that in case of a
mismatch we must go several positions back in the text. Well
in fact this technique can’t be optimized. In 1977 James H.
Morris and Vaughan Pratt described their algorithm [12],
which by skipping lots of useless comparisons is more
effective than brute force string matching. The only thing is to
use the information gathered during the comparisons of the
pattern and a possible match. Implementing Morris-Pratt,
first we have to preprocess the pattern and then perform the
search. The following algorithms show how to do that.

Algorithm 1: Processing the pattern
 Input: S
 Output: Table KMP
1.1 void Creat_Table_KMP(){
1.2 KMP[0]=-1;
1.3 KMP[1]= 0;
1.4 i=2;
1.5 j=0;
1.6 while (i <m)
1.7 if(S[i-1]==S[j]){
1.8 KMP[i]= j + 1;
1.9 i = i + 1;
1.10 j = j + 1;
1.11 }
1.12 else if(j > 0) j= KMP[j];
1.13 else {

1.14 KMP[i]= 0;
1.15 i = i + 1;
1.16 }
1.17 }

Algorithm 2: Performing the search
 Input: S, T
 Output: pos, matched
2.1 void search(){
2.2 i=0; l=0;
2.3 pos=l;//Position found
2.4 matched=0 ;
2.5 while (l + i <= n){
2.6 if (S[i] == T[l + i]){
2.7 i:= i + 1;
2.8 if (i ==m) {
2.9 matched=1;return {pos, matched};
2.10 }
2.11 }
2.12 else if (KMP [i] > -1){
2.13 i= KMP[i]; l= l + i - KMP[i];pos=l;
2.14 }
2.15 Else{
2.16 i= 0; l= l + 1; pos=l;
2.17 }
2.18 }

 Thus the preprocess of the pattern can be done in O(m),
while the search itself needs O(m+n).

 Morris-Pratt algorithm is a very good improvement of the
brute force string searching. However, if we have to find
whether a single character is contained into a text we need at
least n+1 steps. Once we have to find whether a pattern with
the length of m+1 is contained into a text with length of n+1
the case is getting a little more complex. In order to reduce
the time consumption in searching there is such algorithm
that is faster and more suitable than Morris-Pratt, that is the
Boyer-Moore string searching [15, 16]. The Boyer-More
algorithm successively aligns patter S with Text T and checks
if S matche with corresponding tokens in T as in the case of
the naive algorithm. Further after the check is complete S is
shifted right relative to T just as in the naive algorithm.
Further more, apples some intuite tricks to avoid
unnecessary shifts and comparisons. The worst case running
time of the algorithm is O(n), The best case running time is
O(n/m).

3. EDIT DISTANCE AND APPROXIMATE STRING
MATCHING FOR PAPER-REVIEWER ASSIGNMENT

In above section, we consider exact string matching
algorithms to find paper keyword in common with a
reviewer. These algorithms seem to be effectless in case
changing of phrase form or appearance of errors in keywords
but the meaning of these keywords remain the same.
Example: paper keyword is “paper keyword” and reviewer
keyword is “paper’s keyword”, they different at “‘s”, paper

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/String_(computer_science)#String_processing_algorithms
https://en.wikipedia.org/wiki/String_(computer_science)
https://en.wikipedia.org/wiki/Pattern
https://en.wikipedia.org/w/index.php?title=Array_data_structureVector_(mathematics)&action=edit&redlink=1
https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/Byte
http://en.wikipedia.org/wiki/James_H._Morris
http://en.wikipedia.org/wiki/James_H._Morris
http://en.wikipedia.org/wiki/Vaughan_Pratt

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 11 | Nov -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1930

keyword does not appear in reviewer keyword but their
meaning remain the same. Overcome this drawback, in this
section, we propose a approximate searching algorithm base
on computing the lengths of the longest common sub words
of two strings [11,13,14]. The closeness of a match is
measured in terms of the number of primitive operations
necessary to convert the string into an exact match. This
number is called the edit distance between the string and the
pattern. The usual primitive operations are the removal,
insertion, or substitution of a character in the string.

3.1. Edit distance

One possible definition of the approximate string
matching problem is the following: Given a pattern string S
and a text string T, find a substring in T which of all
substrings of T, has the smallest edit distance to the pattern P.

A Brute-Force approach would be to compute the
edit distance to P for all substrings of T, and then choose the
substring with the minimum distance. However, this
algorithm would have the running time O(n3m). A better
solution that have the running time O(nm), which was
proposed by Levenshtein [11], relies on dynamic
programming. A matrix is initialized measuring, the edit
distance between the prefix of P with the prefix of T. The
matrix can be filled from the upper left to the lower right
corner. Each jump horizontally or vertically corresponds to
an insert or a delete, respectively. The cost is normally set to
1 for each of the operations. The diagonal jump can cost
either one, if the two characters in the row and column do not
match or 0, if they do. Each cell always minimizes the cost
locally. This way the number in the lower right corner is the
edit distance between both words. The following algorithm
shows how to do that

Algorithm 3: Edit distance
 Input: S, T
 Output: Edit distance
3.1 int Edit_distance(S, T){
3.2 for (int i = 0; i <= m; i++)
3.3 d[i, 0] = i;
3.4 for (int j = 0; j <= n; j++)
3.5 d[0, j] = j;
3.6 for (int i = 0; i <= m; i++)
3.7 for (int j = 0; j <= n; j++)
3.8 {
3.9 if (S[i] == T[j])
3.10 cost = 0;
3.11 else
3.12 cost = 1;
3.13 d[i + 1, j + 1] = Min(d[i, j + 1] + 1, d[i + 1, j] + 1,

 d[i, j] + cost);
3.14 }
3.15 return d[i,j];
3.16 }

3.2. Approximate string matching for paper –
reviewer assignment

In order to calculate the expertise distance between
reviewer and paper, we first calculate the edit distance
between reviewer keywords and paper keywords. A paper
keyword Pk in common with a reviewer keyword Rij if edit
distance between Pk and Rij is not larger than e (e is a
positive integer constant), the task is to find all approximate
occurrences of the pattern in the text with at most e
differences. The following algorithm calculates expertise
distance and find the most suitable reviewers for a paper.
First, we create a table that is named Reviewer Keyword with
two columns of data named Reviewer ID and Keyword, then,
we create a table that is named Expertise Distance with two
columns of data named ReviewerID and Distance. The
Reviewer Keyword stores the reviewer ID and Keyword,
Expertise Distance stores the reviewer ID and expertise
distance between paper and reviewer. An example: Paper
keyword is Matching. Let d is 0.5.

Table -1: Table Reviewer Keyword

ReviewerID Keyword

1 Matching

2 Random sequence

1 Paper reviewer assignment

3 Machanics

2 Machining

1 Dynamic programming

Table -2: Table Expertise Distance

ReviewerID Expertise distance

1 0.5

2 x

3 x

The operational process of algorithm includes two

phases. In first phase which is called expertise distance
computing phase. Expertise Distance stores the values of
expertise distance that determined during the keyword
matching. The second part of the algorithm is the searching
phase. During this phase, the algorithm is searching reviewer
whose expertise distance value is minimum and satisfying
the constraints in (1). We summarize our searching process
in Algorithm 4.

Algorithm 4: Approximate searching algorithm

Input: P, R,e,d, Max, Sum=

M

i

im
1

 Output: Return reviewer Rk that satifies (1)
4.1 struct ReviewerKeyword {
4.2 int ReviewerID;
4.3 char Keyword [Length];

https://en.wikipedia.org/wiki/Edit_distance
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Dynamic_programming
https://en.wikipedia.org/wiki/Dynamic_programming

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 11 | Nov -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1931

4.4 };
4.5 struct ExpertiseDistance {
4.6 int ReviewerID;
4.7 double Distance;
4.8 };
4.9 struct ReviewerKeyword RK[Sum];
4.10 struct ExpertiseDistance ED[M];
4.11 int ApproximateSearching(P, R,e,d, Max){
4.12 for (int i = 1; i <= M; i++)
4.13 ED(i). Distance=Max;
4.14 for (int i = 1; i <= Sum; i++)
4.15 for (int j = 1; j <= n; j++){
4.16 = Edit_distance(Pj, RK(i). Keyword);

4.17 if (<=e){

4.18 Finding k such that ED(k). ReviewerID is equal
 RK(i). ReviewerID;

4.19 if (ED(k). Distance>d)
4.20 ED(k). Distance=d;
4.21 else
4.22 ED(k). Distance= ED(k). Distance-1/Max
4.23 Break;
4.24 }
4.25 }
4.26 Finding k such that ED(k).Distance

=min1≤i≤M{ED(i).Distance} and satisfying the
constraints in (1).

4.27 return ED(k).ReviewerID;
4.28 }

In case the keyword morphology changes but still has the
same meaning or has the same topic, we set up the
procedure for separating paper keywords into single words,
then applying algorithm 5 for the original keyword set and
single words. We conduct an example to demonstrate the
effectiveness of algorithm 4: Let a paper keyword is “string
matching” and a reviewer keyword is “pattern matching”.
They have he same content that is matching. However, if we
calculate the expertise distace of reviewer and paper by
using edit distace in algorithm 4 then edit distace is 5. If e <5
then the results of algorithm 4 show that there is not
relevance between reviewer and paper. To avoid the above
drawback of the retrieval based methods, we propose
a modified version of algorithm 4.

Algorithm 5: Modified version of algorithm 4 for
Approximate searching

5.1 int ApproximateSearching(P, R,e,d, µ, Max){
5.2 for (int i = 1; i <= M; i++)
5.3 ED(i). Distance=Max;
5.4 for (int i = 1; i <= Sum; i++)
5.5 for (int j = 1; j <= n; j++){
5.6 = Edit_distance(Pj, RK(i). Keyword);

5.7 if (<=e){

5.8 Finding k such that ED(k). ReviewerID is equal
 RK(i). ReviewerID;

5.9 if (ED(k). Distance>d)

5.10 ED(k). Distance=d;
5.11 else
5.12 ED(k). Distance= ED(k). Distance-1/Max;
5.13 Break;
5.14 }
5.15 else{
5.16 If(Pj is substring of RK(i). Keyword

 or RK(i). Keyword is substring of Pj){
5.17 if (ED(k). Distance> µ)
5.18 ED(k). Distance= µ;
5.29 Else
5.20 ED(k). Distance= ED(k). Distance-1/Max
5.21 Break;
5.22 }
5.23 }
5.24 Finding k such that ED(k).Distance

=min1≤i≤M{ED(i).Distance} and satisfying constraints
D(Rk,P)≤µ and Rk∊ Dk;

5.25 return ED(k).ReviewerID;
5.26 }

In this algorithm 5, we consider parameter µ that can replace
d in case the keyword morphology changes but still has the
same meaning and 0<d<µ<1. When finding occurrence
of Pj in RK(i). Keyword or occurrence of RK(i). Keyword in Pj,
we use exact string matching algorithms that are presented
at section 2.

4. EXPERIMENTS

In this section, We give an example to illustrate the
process of our proposed algorithm 5. we first set e=2, μ =
0.5, d=0.1 and Max=10000. Let’s paper keywords are
{Pattern matching; Dynamic programming; Edit distance;
Reviewer keyword; paper reviewer assignment}. Table RK is
defined as follows:

Table -3: Example to illustrate algorithm

Reviewer ReviewerID Keyword

R1

1 Machine learning

1 Dynamic programming

1 Random sequence

R2

2
Clinical Document
Architecture

2 Drug bills

2 String matching

R3
3 Soft computing

3 Artificial neural network

R4

4 String matching

4
Paper reviewer
assignment

4 Dynamic programming

4 Neural network

 4 Reviewer’s keyword

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 11 | Nov -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1932

The results of searching are summarized in table 4.

Table -4: Results of searching

ReviewerID
Expertise
distance

Relevance keywords

4 0.0998
Paper reviewer assignment;
Dynamic programming,
Reviewer’s keyword

1 0.1000 Dynamic programming

2 0.5000 String matching

After calculating, we find three candidate reviewers: R4, R1,
R2. R4 covers 3 of the 5 keywords describing the paper,
expertise distance is 0.0998 that is smallest expertise
distance in set of expertise distance. So, paper should be
assigned to R4. If R4 is busy or R4 already have enough papers
to review then algorithm considers R1 (R4∉D4). If R1∉D1 then
algorithm considers R2, If R2∉D2 then there is nobody to
review paper. In this case, the action editor can select from
this database using keywords, search the bibliography of the
manuscript for appropriate reviewers, or use a feature in
system to search for similar paper to ensure that the
reviewers have the appropriate expertise. One issue is that
in case of two or more reviewers that have expertise
distance are equal, paper should be assigned reviewer that
has selected less keywords which means he is capable of
reviewing less papers, probability of finding another paper
that could be evaluated by this reviewer is smaller than the
probability of finding a paper that could be evaluated by
other.

5. CONCLUSIONS

In this paper, we studied the case of journal
Reviewer Assignment and proposed an effecient algorithm
that finds the most suitable reviewers for each paper.
Experimental results demonstrate that the proposed
approach can effectively and efficiently match experts with
the queries. More importantly, we showed an assignment
algorithm that could lead to efficiency improvements in
approximate searching. Based on the proposed method, we
have built a system to suggest reviewer assignments for
Science and Technology Journal of Thai Nguyen University.
In the future we are also going to apply the proposed method
to several real-world applications.

6. ACKNOWLEDGEMENT

This work was partially done in the scope of project
“Development of software for management and support of
selecting reviewers for Science and Technology
Journal of Thai Nguyen University, Viet Nam”, financially
supported by This work was supported by the Thai Nguyen
University Foundation of Science and Technology
Development.

REFERENCES

[1] H. K. Biswas and M. Hasan (2007), “Using publications and

domain knowledge to build research profiles: An application
in automatic reviewer assignment”, in ICICT.

[2] C. B. Haym, H. Hirsh, W. W. Cohen, and C. Nevill-manning
(1999), Recommending papers by mining the web, In
IJCAI’99, pp. 1–11.

[3] S. T. Dumais and J. Nielsen (1992), “Automating the
assignment of submitted manuscripts to reviewers”, In
SIGIR’92, pp. 233–244.

[4] M. Karimzadehgan, C. Zhai, and G. Belford (2008), “Multi-
aspect expertise matching for review assignment”, In
CIKM’08, pp. 1113–1122.

[5] M. Karimzadehgan and C. Zhai (2009), “Constrained
multi-aspect expertise matching for committee review
assignment”. In CIKM’09, pp. 1697–1700.

[6] D. Hartvigsen, J. C. Wei, and R. Czuchlewski (1999), “The
conference paper-reviewer assignment problem”,
Decision Sciences, 30(3): pp. 865–876.

[7] Y.H. Sun, J. Ma, Z.P. Fan, and J. Wang (2007), “A hybrid
knowledge and model approach for reviewer
assignment”, In HICSS’07, pp. 47–47.

[8] D.K. Tayal, P.C. Saxena, A.Sharma, G. Khanna, S. Gupta
(2014), New method for solving reviewer assignment
problem using type-2 fuzzy sets and fuzzy functions,
Applied intelligence, 40, 1, pp. 54-73.

[9] X. Li, T. Watanabe (2013), “Automatic paper-to-reviewer
assignment based on the matching degree of the
reviewers”, Procedia Computer Science, 22, pp.633-642.

[10] C. Long, R. C. W.Wong, Y.Peng, L.Ye (2013), “On good and
fair paper-reviewer assignment”, In IEEE 13th
International Conference on Data Mining (ICDM'2013),
pp.1145-1150.

[11] Navarro, Gonzalo (2001), “A guided tour to approximate
string matching”, ACM Computing Surveys, 33 (1), pp. 31-88.

[12] Knuth, E. Donald, H. Morris, Jr,James and R. Pratt Vaughan
(1977), “Fast pattern matching in strings”, SIAM Journal on
Computing 6.2, pp. 323-350.

[13] P. Sellers (1980), “The theory and computation of
evolutionary distances: Pattern recognition”, Journal of
Algorithms, 1, pp.359–372.

[14] E. Ukkonen (1985), “Finding approximate patterns in
strings”, Journal of Algorithms, 6, pp.132–137.

[15] R. Boyer and S. Moore (1977), “A fast string searching
algorithm”, Communcations of the ACM, 20, pp.762–772.

[16] Tarhio and E. Ukkonen (1993), “Approximate Boyer-
Moore string matching”, SIAM Journal on Computing, 22,
pp.243–260.

https://www.google.com.vn/search?q=After+calculating,+we+find+three+candidate+reviewers&spell=1&sa=X&ved=0ahUKEwikj63jm9bXAhVMTLwKHVhXAlcQBQggKAA
http://users.csc.calpoly.edu/~dekhtyar/570-Fall2011/papers/navarro-approximate.pdf
http://users.csc.calpoly.edu/~dekhtyar/570-Fall2011/papers/navarro-approximate.pdf

