
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 11 | Nov -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1816

Enhancement of Searching and analyzing the document using

Elastic Search

Subhani shaik1, Nallamothu Naga Malleswara Rao2

1Asst.professor, Dept. of CSE, St. Mary’s Group of Institutions Guntur, Chebrolu, Guntur, A.P, India.
2Professor, Department of IT, RVR & JC College of Engineering, Chowdavaram, Guntur, A.P, India.

---***---
Abstract - Elasticsearch is an open source distributed
document store and search engine that stores and retrieves
data structures in near real-time. Elasticsearch represents
data in the form of structured JSON documents, and makes
full-text search accessible via RESTful API and web clients for
languages like PHP, Python, and Ruby. It’s also elastic in the
sense that it’s easy to scale horizontally. Elasticsearch provide
lots of advanced features for adding search to your
application. In this paper, Searching and Analyzing Data with
Elasticsearch will be covered by introducing the basic building
blocks of search algorithms, how inverted index will be created
for the documents you want to search, perform a variety of
search queries on these documents, how to explore the TF/IDF
for search ranking and relevance, and the important factors
which determine how a document is scored for every search
term.

Key Words: Inverted Index, stopwords, Tokenizer, Filter,
TF/IDF.

1. INTRODUCTION

In the world of big data, it is unimaginable to use traditional
techniques such as RDBMS to analyze the data, as volume of
the data is growing very quickly. Big data offers the solution
for analyzing huge amount of data. Using Elastic search,
access to data can be made even quicker. Elastic search is a
search engine based on Lucene. Elastic search uses the
concept of indexing to make the search quicker. This paper
elaborates the search technique of Elastic search.

Elasticsearch is a schema less big data technology that uses
the indexing concept. It is a document oriented tool. That
means once the document is added, it can be searched within
a second. Elasticsearch can be used for many use cases like
analytics store, auto completer, spell checker, alerting
engine, and as a general purpose document store; Full text
search is one of it. It is a robust search engine that provides a
quick full text search over various documents. It searches
within full text fields to find the document and return the
most relevant result first. The relevancy of documents is
good as Elasticsearch uses boolean model to find document.
As soon as a document matches a query, Lucene calculates
its score for that query, combining the scores of each
matching term. The relevance of the document can be
calculated using practical scoring function.

2. SEARCHING WITH ELASTIC SEARCH

The search feature is a central part of every product today.
Elastic search is one of the most popular open source
technologies which allow you to build and deploy efficient
and robust search quickly. Elastic search database is
document oriented. By default, the full document is returned
as part of all searches. This is referred to as the source. If the
entire source document is not to be returned, then only a few
fields from within source can be returned. The Elastic search
uses the inverted index to search the term. The terms are
sorted in ascending order.

Elastic search provides the ability to subdivide the index into
multiple pieces called shards. When a new document is
stored and indexed, Elastic search server defines the shard
responsible for that document. When an index is created,
user can simply define the number of shards. Each shard is in
itself a fully-functional and independent "index" that can be
hosted on any node in the cluster. Any number of documents
can be uploaded irrespective of its type. Indexes are used to
group documents and each document is stored using a
certain type. Shards are used to distribute parts of an index
across several nodes and replicas are copies of shards that
are used for distributing load as well as for fault tolerance.

Fig.1: Creating Shards in Nodes

2.1 Creation Of Inverted Index Using Elasticsearch

Elasticsearch uses the concept of inverted index for
searching. When the query is fired, Elasticsearch looks into
inverted index table to find the required data. It will show
the relevant document in which the term is contained. The
inverted index searches the relevant document by mapping

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 11 | Nov -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1817

the term to its containing document. In the dictionary the
terms are sorted which results in quick search.
The act of storing data in Elastic search is called indexing.
Before indexing a document, we need to decide where to
store it. An Elastic search cluster can contain
multiple indices, which in turn contain multiple types. These
types hold multiple documents, and each document has
multiple fields.

2.1.1 Creating an employee directory
Index a document per employee to include all the details of
an employee. Each document will be of type employee. That
type will live in the stmarys index that resides within the
Elasticsearch cluster.

PUT /stmarys/employee/501
{

"first_name" : "Subhani",
"last_name" : "Shaik",
"age" : 25,
"about" : “I like to play cricket",
"interests": ["sports", "music"]

}
PUT /stmarys/employee/502

{
"first_name" : "Firoze",
"last_name" : "Shaik",
"age" : 32,
"about" : "I like to play football ",
"interests": ["music"]
}
PUT / stmarys/employee/503
{
"first_name" : "Lakshman",
"last_name" : "Pinapati",
"age" : 35,
"about":"I like to read books",
 "interests": ["study"]

 }
Every path contains three pieces of information: The index
name, the type name and The ID of this particular employee.
The request body contains all the information about this
employee. His name is Subhani Shaik, he’s 25 years old, and
enjoys playing cricket. Now we have some data stored in
Elastic search.

Retrieving a Document

If we want to retrieve the data of a particular employee
execute an HTTP GET request and specify the address of the
document—the index, type, and ID.

GET /stmarys/employee/501

The response contains some metadata about the
document, and Subhani Shaik’s original JSON document as
the _source field:

{
 "_index" : "stmarys", "_type" : "employee",
 "_id" : ‘501", "_version" : 1,
 "found" : true, "_source" : {
 "first_name" : "Subhani", "last_name": "Shaik",
 "age" : 25, "about" : "I like to play cricket",
 "interests": ["sports", "music"]
 }
}
Searching a document:
To retrieve three documents in the result array use
the _search endpoint.
GET /stmarys/employee/_search
{
 "took":6,"timed_out": false,
 "shards": { ... },”result ": {
 "total": 3, "max_score": 1,
 "result": [
 {
 "_index": "stmarys",
 "_type" : "employee",
 "_id" : "503", "_score": 1,
 "_source": {
 "first_name": "Lakshman",
 "last_name" : "Pinapati",
 "age": 35,

 "about":"I like to read books",
 "interests": ["study"]
 }
 },
 {

"_index": "stmarys"
"_type": "employee",
"_id": "501","_score":1,
"_source": {
"first_name" : "Subhani",
"last_name" : "Shaik",
"age" : 25,
"about": "I like to play cricket",
"interests" : ["sports", "music"]

 }
 },
 {

"_index": "stmarys","_type": "employee",
"_id": "2","_score":1,
"_source": {
"first_name" : "Firoze","last_name" :"Shaik",
"age" : 32, "about" : "I like to play football ",
"interests": ["music"] }

 }]
 }
}
To Search for employees who have “Shaik” in their last name
use a lightweight search method that is easy to use from the
command line. This method is often referred to as a query-
string search, since we pass the search as a URL query-string
parameter:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 11 | Nov -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1818

GET/stmarys/employee/_search? q=last_name:Shaik
We use the same _search endpoint in the path, and we add
the query itself in the q= parameter. The results that come
back show all Shaiks:
{
 ...
 "result": {
 "total": 2,
 "max_score": 0.30685282,
 "result": [
 {
 ...
 "_source": {
"first_name" : "Subhani",
"last_name" : "Shaik",
"age" : 25,
"about" : "I like to play cricket",
"interests" :["sports", "music"]
 }
 },
{
 ...
"_source": {
"first_name" : "Firoze",
"last_name" : "Shaik",
"age" : 32,
"about" : "I like to play football ",
"interests" : ["music"]
 } }
] }
}
Search with a query DSL
Query-string search is handy for ad hoc searches from the
command line, but it has its limitations. Elastic search
provides a rich, flexible, query language called the query DSL,
which allows us to build much more complicated, robust
queries.
The domain-specificlanguage (DSL) is specified using a JSON
request body. We can represent the previous search for all
Smiths like so:
GET /stmarys/employee/_search
{
 "query" : {
 "match" : {
 "last_name" : "Shaik"
 } }
}
Full Text Search:
to search for all employees who enjoy rock climbing:
GET /megacorp/employee/_search
{
 "query" : {
 "match" : {
 "about" : " Play Cricket"
 }
 }
}

You can see that we use the same match query as before to
search the about field for “Play Cricket”. We get back two
matching documents:
{
 ...
 "result": {
 "total": 2, "max_score": 0.16273327,
 "result": [
 {
 ...

 "_score": 0.16273327,
 "_source": {

"first_name": "Subhani", “last_name": "Shaik",
"age" : 25,"about" : "I like to play cricket",
"interests": ["sports", "music"]

 }
 },
 {
 ...

"_score": 0.016878016,
"_source": {
"first_name" : "Firoze","last_name" : "Shaik",
"age" : 32, "about" : "I like to play football",
 "interests" : ["music"]

 }
 }] } }
Elasticsearch sorts matching results by their relevance score,
that is, by how well each document matches the query. The
first and highest-scoring result is obvious: Subhani
Shaik’s about field clearly says “Play Cricket” in it.
But why did Firoze Shaik come back as a result? The reason
his document was returned is because the word “Play” was
mentioned in about field. Because only “Play” was
mentioned, and not “Cricket,” his _score is lower than
Subhani’s.
Phrase Search
To match exact sequences of words or phrases we can use a
slight variation of the match query called
the match_phrasequery:
GET /stmarys/employee/_search
{
 "query" : { "match_phrase" : {
 "about" : " Play Cricket"
 }
 }
 }

This returns only Subhani Shaik’s document:
{
 ...
 "result": { "total":1, "max_score": 0.23013961,
 "result": [
 { ...
 "_score": 0.23013961, "_source": {

"first_name" : "Subhani",
"last_name" : "Shaik",

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 11 | Nov -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1819

"age" : 25,"about" : "I like to play cricket",
"interests": ["sports", "music"]

 }
 }
]
 }
}
Above query gives an output that will match only employee
records that contain both “Play” and “cricket” and that
display the words next to each other in the phrase “Play
Cricket”.

2.2 Using stopword list to fasten the search process.

Elastic search uses the concept of Stopword list to fasten the
search process. Elasticsearch has its own list of predefined
stopwords. Stopwords can usually be filtered out before
indexing. The inverted index is then created over the terms
of document to make search faster.

ID Term Document

1 beautiful
Document 1,

Document 2

2 bird
Document 1

3 blue Document 2

4 bright
Document 2,

Document 3

5 building
Document 1

6 color Document 2

7 flies
Document 1

8 looks Document 2

9 Sky Document 2

10 sunlight Document 3

11 today Document 3

The beautiful bird

flies on the

building

There is a bright

sunlight today

The sky looks very

beautiful in the

bright blue color

The

a

is

on

in

the

There

Document 2

Document 3

Stopword List Inverted Index

Document 1

Fig.2: Stopword list of Elastic search

2.2.1 Stopwords

To use custom stopwords in conjunction with the standard
analyzer, all we need to do is to create a configured version
of the analyzer and pass in the list of stopwords that we
require:

PUT /my_index
{
 "settings": { "analysis": { "analyzer": {

 "my_analyzer": {
 "type": "standard",
 "stopwords": ["and", "the"]
 } }
 } }
}

2.2.2 Specifying Stopwords

Stopwords can be passed inline, by specifying an
array:"stopwords": ["and", "the"]. The default stopword list
for a particular language can be specified using the _lang_
notation: “stopwords": "_english_". Stopwords can be
disabled by specifying the special list: _none_. To use the

english analyzer without stopwords, you can do the
following:

PUT /my_index
{
 "settings": { "analysis": { "analyzer": { "my_english":
 { " type" : "english",
 "stopwords" : "_none_"
 } }
 } }
}
Stopwords can also be listed in a file with one word per line.
The file must be present on all nodes in the cluster, and the
path can be specified with the stopwords_path parameter:
PUT /my_index
{
 "settings": { "analysis": { "analyzer":
 { "my_english": {
 "type": "english",
 "stopwords_path": "stopwords/english.txt"

 } }
 } }
}

2.2.3 Updating Stopwords

Updating stopwords is easier if you specify them in a file
with the stopwords_path parameter. You can just update the
file on every node in the cluster and then force the analyzers
to be re-created by either Closing and reopening the index or
restarting each node in the cluster, one by one.

2.2.4 Stop words and performance

The major drawback of keeping stopwords is that of
performance. When Elasticsearch performs a full-text search,
it has to calculate the relevance _score on all matching
documents in order to return the top ten matches. What we
need is a way of reducing the number of documents that
need to be scored. The easiest way to reduce the number of
documents is simply to use and operator with the match
query, in order to make all words required.

A match query like this:
{
 "match": {
 "text": {
 "query": "the quick brown fox",
 "operator": "and"
 } }
}
is rewritten as a bool query like this:
{
 "bool": {
 "must": [
 { "term": { "text": "the" }},
 { "term": { "text": "quick" }},
 { "term": { "text": "brown" }},

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 11 | Nov -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1820

 { "term": { "text": "fox" }}
]
 }
}
The bool query is intelligent enough to execute each term
query in the optimal order—it starts with the least frequent
term. Because all terms are required, only documents that
contain the least frequent term can possibly match. Using the
and operator greatly speeds up multi term queries.

3. ANALYZING DATA USING ELASTIC SEARC

The analyzing process is one of the main factors for
determining the quality of search. In Elastic search, how
fields are analyzed is determined by the mapping of the type.
The analyzing process for a certain field is determined once
and cannot be changed easily. The process of tokenization
and normalization which is called analysis can be used to
fasten the search process.

3.1 TOKENIZATION

A tokenizer receives a stream of characters, breaks it up into
individual tokens, and outputs a stream of tokens. The
tokenizer is also responsible for recording the order or
position of each term and the start and end character offsets
of the original word which the term represents. Elasticsearch
has a number of built in tokenizers to build custom
analyzers.

3.1.1 Word Oriented Tokenizers

The following tokenizers are used for tokenizing full text into
individual words:

 Standard Tokenizer : Divides text into terms on word

boundaries, as defined by the Unicode Text Segmentation
algorithm. It removes most punctuation symbols.

 Letter Tokenizer : Divides text into terms whenever it
encounters a character which is not a letter.

 Lowercase Tokenizer : Divides text into terms whenever it

encounters a character which is not a letter, but it also
lowercases all terms.

 Whitespace Tokenizer : Divides text into terms whenever

it encounters any whitespace character.

 UAX URL Email Tokenizer : Similar to the standard

tokenizer except that it recognizes URLs and email
addresses as single tokens.

 Classic Tokenizer : A grammar based tokenizer for the

English Language.

 Thai Tokenizer : Segments Thai text into words.

3.1.2 Partial Word Tokenizers

These tokenizers break up text or words into small
fragments, for partial word matching:

 N-Gram Tokenizer : Breaks up text into words when it

encounters any of a list of specified characters (e.g.
whitespace or punctuation), then it returns n-grams of
each word: a sliding window of continuous letters, e.g.
quick → [qu, ui, ic, ck].

 Edge N-Gram Tokenizer : Breaks up text into words and
returns n-grams of each word which are anchored to the
start of the word, e.g. quick → [q, qu, qui, quic, quick].

3.1.3 Structured Text Tokenizers

Structured text like identifiers, email addresses, zip codes,
and paths, rather than with full text will use the following
tokenizers

 Keyword Tokenizer : The keyword tokenizer is a “noop”

tokenizer that accepts whatever text it is given and
outputs the exact same text as a single term. It can be
combined with token filters like lowercase to normalize
the analyzed terms.

 Pattern Tokenizer : The pattern tokenizer uses a regular
expression to either split text into terms whenever it
matches a word separator, or to capture matching text as
terms.

 Path Tokenizer : The path_hierarchy tokenizer takes a

hierarchical value like a filesystem path, splits on the path
separator, and emits a term for each component in the
tree, e.g. /foo/bar/baz → [/foo, /foo/bar, /foo/bar/baz].

3.1.4 Email-link tokenizer

In circumstances where we have URLs, emails, or links to be
indexed, a problem comes up when we use the standard
tokenizer.

Consider we index the following two documents in an index:

curl -XPOST '<a ref="http://localhost:9200/analyzers-
blog-03/emails/1">http://localhost:9200/analyzers-
blog-03-01/emails/1' -d '{

"email": "stevenson@gmail.com"
}'
curl -XPOST '<a ref="http://localhost:9200/analyzers-
blog-03/emails/2">http://localhost:9200/analyzers-
blog-03-01/emails/2' -d '{

"email": "jennifer@gmail.com"
}'
Here you can see that we only have email ids in each
document.

https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-lowercase-tokenfilter.html

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 11 | Nov -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1821

Run the following query

curl -XPOST '<a
href="http://localhost:9200/analyzers-blog-
03/emails/_search?&pretty=true&size=5">http://local
host:9200/analyzers-blog-03-
01/emails/_search?&pretty=true&size=5' -d '{
 "query": {
 "match": {
 "email": "stevenson@gmail.com"
 }
 }}'

Here, the standard tokenizer, split the values in the field
"email" at the "@" character. i.e., "stevenson@gmail.com" is
split into "stevenson" and "gmail.com." This happens for all
the documents and this is why all the documents have
"gmail.com" as a common term. Here the query must return
only the first document but the response consists of all the
other documents.

We can solve this issue by using the "UAX_Email_URL"
tokenizer instead of the default tokenizer. The
UAX_Email_URL tokenizer works the same as the standard
tokenizer, but it can recognize URLs and emails and will
output them as single tokens.

3.2 FILTERS

3.2.1 Edge-n-gram token filter

Most of our searches are single word queries, but not in all
circumstances. For example, if we are implementing an
autocomplete feature, we might want to have the feature of
substring matching too. So if we are searching for "prestige,"
the words "pres", "prest" etc should match against it. In
Elasticsearch, this is possible with the "Edge-Ngram" filter.
So let's create the analyzer with "Edge-Ngram" filter as
below:

curl -X PUT
 "
http://localhost:9200/analyzers-blog-03-02" -d '
{ "index": { "number_of_shards": 1,
 "number_of_replicas": 1 },
 "analysis": { "filter": { "ngram": {
 "type":"edgeNGram",min_gram":2,"max_gram": 50
 } },
 "analyzer": { "NGramAnalyzer": {
 "type": "custom", "tokenizer": "standard",
 "filter": "ngram" } }
 } }'

The analyzer has been named "NGramAnalyzer," this
analyzer would create substrings of all the tokens from one
end of the token with the minimum length of two
(min_gram) and the maximum length of fifty (max_gram).
This kind of filtering can be used to implement the
autocomplete feature or the instant search feature in our
application.

3.2.2 Phonetic token filter

Sometimes we make small mistakes while searching, i.e., we
may type "grammer" instead of "grammar." These words are
phonetically same but in a dictionary search environment if
"grammer" is searched there will not be returning
results. Elasticsearch makes use of the Phonetic token filter
to search for "Kanada" and still see the results for "Canada."

3.2.3 Stop Token Filter

The stop token filter can be combined with a tokenizer and
other token filters to create a custom analyzer

3.3 NORMALIZATION

As search is used everywhere users also have some
expectations of how it should work. Instead of issuing exact
keyword matches they might use terms that are only similar
to the ones that are in the document. We can normalize the
text during indexing so that both keywords point to the same
term in the document. Lucene, the library search and storage
in Elasticsearch is implemented with provides the
underlying data structure for search, the inverted index.
Terms are mapped to the documents they are contained in. A
process called analyzing is used to split the incoming text
and add, remove or modify terms.

Fig.3: Process of Normalization

On the left we can see two documents that are indexed, on
the right we can see the inverted index that maps terms to
the documents they are contained in. During the analyzing
process the content of the documents is split and
transformed in an application specific way so it can be put in
the index. Here the text is first split on whitespace or
punctuation. Then all the characters are lowercased. In a
final step the language dependent stemming is employed
that tries to find the base form of terms. This is what
transforms our Anwendungsfälle to Anwendungsfall.

Elasticsearch does not know what language our string is in
so it doesn't do any stemming which is a good default. To tell
Elasticsearch to use the German Analyzer instead we need to
add a custom mapping. We first delete the index and create it
again:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 11 | Nov -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1822

curl -XDELETE "http://localhost:9200/conferences/"
curl -XPUT "http://localhost:9200/conferences/“
We can then use the PUT mapping API to pass in the
mapping for our type.
curl -XPUT
"http://localhost:9200/conferences/talk/_mapping" -
d'
{ "properties": { "tags": {
 "type": "string","index":"not_analyzed"
 },
 "title": { "type": "string","analyzer": "german"
 } }
}'

4. TERM FREQUENCY/INVERSE DOCUMENT
FREQUENCY (TF/IDF) ALGORITHM

The standard similarity algorithm used in Elasticsearch is
known as term frequency/inverse document frequency, or
TF/IDF. The list of matching documents need to be ranked by
relevance. The relevance score of the document depends on
the weight of each query term that appears in that document.
The weight of a term is determined by Term frequency,
Inverse document frequency and Field-length norm

Term frequency

The more often the term appears in the document, the higher
the weight. A field containing five mentions of the same term
is more likely to be relevant than a field containing just one
mention. The term frequency (tf) for term t in document d is
the square root of the number of times the term appears in
the document

 tf(t in d) = √frequency

Setting index_options to docs will disable term frequencies
and term positions. A field with this mapping will not count
how many times a term appears, and will not be usable for
phrase or proximity queries. Exact-value not_analyzed string
fields use this setting by default.

Inverse document frequency

The more often the term appears in all documents in the
collection, the lower the weight. The inverse document
frequency is calculated as follows:

idf(t) = 1 + log (numDocs / (docFreq + 1))

The inverse document frequency (idf) of term t is the
logarithm of the number of documents in the index, divided
by the number of documents that contain the term,

Field-length norm

The shorter the field, the higher the weight. If a term appears
in a short field, such as a title field, it is more likely that the

content of that field is about the term than if the same term
appears in a much bigger body field. The field length norm is
calculated as follows:

norm (d) = 1 / √numTerms

The field-length norm (norm) is the inverse square root of
the number of terms in the field.

5. THE PRACTICAL SCORING FUNCTION

The relevance score of each document is represented by a
positive floating-point number called the _score. The higher
the _score, the more relevant the document. Before
Elasticsearch starts scoring documents, it first reduces the
candidate documents down by applying a boolean test by
checking whether the document match the query or not.
Once the results that match are retrieved, the score they
receive will determine how they are rank ordered for
relevancy.

The scoring of a document is determined based on the field
matches from the query specified. Elasticsearch uses the
Boolean model to find matching documents, and a formula
called the practical scoring function to calculate relevance.
This formula borrows concepts from term frequency/inverse
document frequency and the vector space model but adds
more-modern features like a coordination factor, field length
normalization, and term or query clause boosting.

score(q,d) = queryNorm(q)* coord(q,d)* SUM (tf(t in
d), idf(t)², t.getBoost(),norm(t,d)) (t in q)

 score(q,d) - relevance score of document d for query q.
 queryNorm(q) - query normalization factor.
 coord(q,d) - coordination factor.
 tf(t in d) - term frequency for term t in document d.
 idf(t) - inverse document frequency for term t.
 t.getBoost() - boost that has been applied to the query.
 norm(t,d) - field-length norm, combined with the index-

time field-level boost, if any.

The practical scoring function can also be improved for
better relevancy of documents. The boost parameter is used
to increase the relative weight of a clause with a boost
greater than 1 or decrease the relative weight with a boost
between 0 and 1, but the increase or decrease is not linear.
Instead, the new _score is normalized after the boost is
applied. Each type of query has its own normalization
algorithm. A higher boost value results in a higher _score.

6. CONCLUSION

Elastic search is both a simple and complex product. In this
paper we have covered how to perform searching and
analyzing the data with elastic search. We have discussed
how to explore the tf/idf for search ranking and relevance,
and the important factors which determine how a document

http://en.wikipedia.org/wiki/Standard_Boolean_model
https://www.elastic.co/guide/en/elasticsearch/guide/current/practical-scoring-function.html
http://en.wikipedia.org/wiki/Tfidf
http://en.wikipedia.org/wiki/Tfidf
http://en.wikipedia.org/wiki/Vector_space_model

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 11 | Nov -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1823

is scored for every search term. We have discussed how
elastic search handles a variety of searches, such as full-text
queries, term queries, compound queries, and filters. We
have discussed the creation of inverted index using
elasticsearch,using stopword list to fasten the search
process. And finally we have studied how term
frequency/inverse document frequency (tf/idf) algorithm
explores for calculating practical scoring function.

7. REFERENCES

[1]Survey Paper on Elastic Search Pragya Gupta, Sreeja Nair
International Journal of Science and Research (IJSR)

[2]http://www.elasticsearchtutorial.com/basic-
elasticsearch-concepts.html

[3]https://www.elastic.co/guide/en/elasticsearch/guide/cu
rrent/inverted-index.html

[4]https://www.tutorialspoint.com/elasticsearch/elasticsea
rch_basic_concepts.html

[5]Full-Text Search on Data with Access Control Ahmad
Zaky, Rinaldi Munir, S.T., M.T.

School of Electrical Engineering and Informatics Institut
Teknologi Bandung.

[6]Use Cases for Elasticsearch: Full Text
Search:http://blog.florian-hopf.de/2014/07/use-cases-for-
elasticsearch-full-text.html

[7]https://www.elastic.co/guide/en/elasticsearch/guide/cu
rrent/stopwords.html#stopwords

[8]https://qbox.io/blog/optimizing-elasticsearch-how-
many-shards-per-index

BIOGRAPHIES:

Mr. Subhani shaik is working as Assistant
professor in Department of computer science
and Engineering at St. Mary’s group of
institutions Guntur, he has 12 years of

Teaching Experience in the academics.

Dr. Nallamothu Naga Malleswara Rao is
working as Professor in the Department of
Information Technology at RVR & JC College of
Engineering with 25 years of Teaching
Experience in the academics.

