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Abstract - Hydrological model performance and its 
behavior is evaluated by comparison of observed and 
simulated variables. Mostly, the comparison is done between 
measured and simulated flows. Hydrologist use efficiency 
criteria to know the closeness of the observed and model- 
simulated values. Correlation-based methods have been used 
widely to evaluate the model performance. These measures are 
sensitive to peak flows but insensitive for low flow values, due 
to these limitations Nash-Sutcliffe efficiency (E) and coefficient 
of determination (R2) can give better agreement even for very 
poor models. So different modifications to these criteria are 
presented in this study. This paper also emphasizes on 
different efficiency criteria, their pros and cons, and suitable 
conditions for each of the different efficiency criteria. In this 
study goodness of fit has been tested for three different 
scenarios, and it is recommended that the use of correlation-
based measures alone for model evaluation is not suitable, it 
should be a combination of different efficiency criteria. 
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1. INTRODUCTION 
 
The river basin or catchment is a geographical scale 
generally used to manage the water resources. In a 
catchment, all the precipitation in the watershed will be 
added to the flow at a single outlet. At the outlet, water can 
be considered as a source of risk or damage in terms of flood, 
or can be considered as a source for satisfying the human 
needs in term of irrigation or drinking water. In both 
scenarios, it is essential to measure the water flowing into 
the stream in terms of its temporal distribution and volume 
(Krause, Boyle, and Base, 2005).  
 
Modelling involves empirical idealization and simplification 
of catchments. The operations of simplification and 
separation of precipitation introduce errors because of 
inadequate knowledge about the interactions of all the 
components within a watershed (Nash & Sutcliffe, 1970). 
Every hydrological model has some limitations, as it uses 
some simplification and empirical idealism, which results in 
an error between the observed and simulated discharge. So 
it is necessary to choose an appropriate model with a 
minimum error to simulate the rainfall-runoff relation near 
to the reality as much as possible (Krause, Boyle, and Base, 
2005). 

According to US EPA (2002), for acceptable results, models 
should be scientifically sound, robust and defensible. For 
such a model, it has to undergo the process of sensitivity 
analysis, model calibration, and validation. Sensitivity 
analysis is the determination of the response of the model 
output with respect to the input and in this process key 
model parameters are identified. In calibration, the 
identified parameters are determined by comparison of 
observed and predicted discharges. The last process of 
validation is a confirmation that the parameters and by 
extension the model produces sufficiently accurate 
predictions. However, a footnote should always be added 
about the uncertainties of the results (Moriasi et al, 2007). 
Because of the errors introduced by simplification of 
catchments during modeling, there usually are differences 
between the actual and simulated runoff. The evaluation of 
these differences forms the basis of model performance 
assessment. The purpose of the performance criteria is not 
only to find out the closeness of fit but also to use the 
findings to improve the models (Krause, Boyle, and Base, 
2005). 
 
The model performance assessment is done either 
subjectively or objectively. In the subjective assessment, 
visual inspection of the closeness of fit between the actual 
and simulated discharges is done and the systematic (under-
estimation/overestimation) or dynamic (periodic pattern) 
behavior of the model is noted. The objective assessment 
involves mathematical analysis of the closeness of fit of the 
two discharges and it is known as the efficiency criteria 
(Krause, Boyle, and Base, 2005). This means that the lower 
the error between observed and simulated runoff 
discharges, the higher the efficiency of the model and the 
more accurately it can be used to predict historical and 
future discharges. Most of the efficiency criteria are simply 
summations of the individual errors at each time step of a 
hydrograph which is then normalized by a measure of 
variability in the observations (Krause, Boyle, and Base, 
2005). Most often the efficiency of a model is based solely on 
how well the predicted values fit the observed values, the 
assumption being that the observed data is error free while 
this is not necessarily always the case (Moriasi et al, 2007). 
There are numerous efficiency criteria, which have been put 
forward. According to Legates & McCabe (1999) and Moriasi 
et al. (2007), a good efficiency criterion should have at least 
three important components i.e. one dimensionless statistic, 
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one absolute error index statistic and one graphical 
technique. 
 
The objectives of this paper are  
 
i) Review a selection of efficiency criteria, show their 

limits and recommend mitigation measures; 

ii) Evaluate factors which affect model performance 
recommend mitigation measures; 

Iii) Recommend guidelines on model evaluation for 
future reference. 

 
Since in initial times of hydrological modeling, there was 
always a need to evaluate the model result and to know their 
flow prediction efficiency. Initial developments of conceptual 
models, Dawdy and O'Donnell (1965) and Linsley and 
Crawford (1960), measured the model residuals by plotting 
simulated and observed hydrographs or by knowing the 
difference in percentage between simulated and observed 
flows. Moreover, computation periods in early times were a 
major limitation and probably restricted the calculation of 
different evaluation criteria. While, the question of how to 
evaluate model performance, was often recognized as a vital 
issue. Nash and Sutcliffe (1970) propose an efficiency index 
for hydrological simulations evaluation. The aim was to offer 
an objective mean for giving a benchmark to a simulation. 
This proved to be a very worthy try as their index remains 
most extensively used in hydrological modeling regardless of 
its identified flaws (Gupta et al, 2009). Although after doing 
all these efforts, model evaluation remains a quite complex 
process and is related strongly to the modeling objectives. 
 

2. METHODOLOGY 
 
2.1 Study Area Data Basis 
 
To review the performance of the efficiency criteria, three 
papers Moriasi et al. (2007), Gupta et al. (2009) and Krause 
et al. (2005) have been used with different study area and 
data. The paper by Moriasi et al. (2007), was based on a 
previous modeling study by Arnold et al. (1998), where the 
SWAT2005 modeling tool was applied to the Leon River 
basin in Texas, USA. Average monthly observed discharged 
values were compared against simulated values. The paper 
by (Krause, Boyle, and Base, 2005) used daily discharge data 
from Wilde Gera catchment in Germany over the period 
November 1990 to April 1991. A proper model was not used 
to simulate the data but synthetic data was generated to act 
as simulated discharge emphasizing different types of errors 
(Krause and Flugel 2005). The paper by Gupta et al. (2009) 
used data from 49 Australian Basins between a period of 
September 1990 to August 2000. The daily data was used by 
a rainfall-runoff model to predict discharges from the basin. 
 
 

2.2 Evaluation of Hydrological Models 
 
Visual criteria is most straight forward approach to evaluate 
models. Visual inspection uses graphical means and compare 
simulated and observed values. Since model fit is calculated 
by eye, this evaluation technique is often considered 
qualitative or approximate (Crochemore 2011). Hydrological 
models results are graphically represented by plotting: 
 
Simulated and observed discharge hydrographs over time 
(Figure 1). 
 
Simulated against the observed discharge (Q-Q plots, Figure 
2). 
 
Cumulative distribution function of simulated and observed 
flows (flow duration curves, Figure 3). 
 

 
 

Figure 1. Observed and simulated daily flow hydrograph 
(Crochemore 2011) 

 

 
 

Figure 2. Q-Q Plot (Crochemore 2011) 
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Figure 3. Observed and simulated flow duration curve 
(Crochemore 2011) 

 
Mathematical criteria for evaluating and comparing models 
computes a distance between simulated and measured flow 
values over a selected time period. Mathematical criteria are 
considered objective and are numerically described. 
Different mathematical criteria such as dimensionless 
criteria (Nash-Sutcliffe efficiency, index of agreement), error 
index (root mean square error, percent bias) etc., are 
available (explained in following sections) (Crochemore 
2011). Mathematical criteria need to be applied very 
watchfully as they do not evaluate the same ranges nor types 
of values (Krause, Boyle, and Base, 2005). For example, an 
effective criterion to evaluate models for low discharges will 
probably not be effective for evaluating high discharges 
simulated by the same model. Regardless of their seeming 
simplicity, still it is difficult to fully understand the behavior 
of numerical criteria (Gupta et al., 2009; Berthet et al., 
2010a; Berthet et al., 2010b). 
 
The objective of this study is to review different criteria of 
goodness of fit and to know the advantages and 
disadvantages for each criterion. To understand the 
conditions under which a specific criterion produces 
effective results. Finally, review of the basic guidelines for 
model evaluation. There are several numerical methods to 
evaluate the hydrological models but we will discuss only 
the methods which are widely been used for model 
performance assessments such as coefficient of 
determination R2, Nash and Sutcliffe efficiency E and the 
index of agreement d.  
 

2.3 Description of the efficiency criteria 
 
The efficiency criteria to be reviewed were categorized into 
three major types, Standard regression criteria, 
dimensionless criteria and error index criteria as shown in 
Table 1 (Moriasi et al, 2007). 
 

Table 1: Categories of Efficiency Criteria 
 
Standard 
regression 
criteria 

Dimensionless 
criteria 

Error index criteria 

Slope and y-
intercept 

Index of 
Agreement, d 

Percent Bias (PBIAS) 

Co-efficient of 
determination 
and Pearson 
correlation 
coefficient 

Nash-Sutcliffe 
efficiency 
(NSE); 

RMSE-observations 
and Standard 
deviation ratio 

 NSE with 
logarithmic 
values 

 

 Kling-Gupta 
efficiency 
(KGE) 

 

Source: Moriasi et al. (2007) and (Krause, Boyle, and Base, 
2005). 
 
Other techniques include modification of the main 
techniques and graphical techniques e.g. hydrographs, 
percent exceedance probability curves, bar graphs and box 
plots (Moriasi et al, 2007). 

 
2.3.1 Standard regression criteria 
 
[a] Slope and y-intercept 
 
It is simply a line of best fit through the standard regression 
plot of the observed against predicted discharges. The slope 
indicates the relative relationship of the values being 
compared and the y-intercept shows lead or lag between the 
data. This criterion is performed under the assumption there 
are no measurement errors in the observed data, which is 
not always the case. A slope of one and a y-intercept of zero 
show a perfect fit between simulated and observed data 
(Moriasi et al, 2007). 

 
[b] Co-efficient of determination and Pearson 
Correlation Coefficient 
 
The coefficient of determination in observed data explains 
the fraction of the total variance. The coefficient of 
determination value ranges from 0 to 1.  
 

 
 
Where 
Oi = observed discharge 
Pi = simulated discharge 

 = mean of observed discharge 

 = mean of simulated discharge 
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The coefficient of Determination having a value of one 
indicates better agreement, while the value of zero reflect 
that there is no co-relation (predicted and observed values 
are equal) (Legates and McCabe, 1999). The coefficient of 
Determination has some limitations as it evaluates only the 
linear relationship between variables. It can be explained as 
if Pi = (AOi + B), where A = non zero value, B = any value. In 
this case coefficient of determination (R2) will be equal to 
one, this reflects that R2 is very exhaustive to additive and 
proportional differences between observed and model 
simulated values (Willmott, 1981). Hence higher values of 
coefficient of determination can be achieved even when 
observed and model simulated values vary significantly. The 
model would present a serious error in these situations. 
Moreover, co-relation based measures are sensitive to 
outliers instead of values which are near to the mean. 
Coefficient of determination (R2) value will greatly be 
affected by a single outlier, which will result in bias in model 
evaluation (Legates and McCabe, 1999). Adjustment factor 
was introduced to overcome the limitations in co-relation 
based methods (McCuen and Snyder, 1975). 
 

 
 
Where 
Oi = observed discharge 
Pi = simulated discharge 

 = mean of observed discharge 

 = mean of simulated discharge 
 
Observed and predicted co-relation value is multiplied by an 
adjustment factor to account for the differences between 
predicted and observed standard deviations. But adjustment 
factor also has some limitations.  In case of higher values of 
model predicted variance, use of adjustment factor will 
result in higher values of co-relation and can be more than 
one in extreme cases. So the use of adjustment factor is not 
always recommended (McCuen and Snyder, 1975). 

 
2.3.2 Dimensionless Criteria 
 
[a] Index of Agreement, d 
 
It was introduced to overcome the insensitivities of NSE and 
coefficient of determination and is simply the ratio of the 
mean square error and the potential error. Its values range 
between 0 and 1, with 1 denoting a perfect fit while zero 
means no fit at all (Krause, Boyle, and Base, 2005). 
 
The index of agreement can detect proportional and additive 
differences in the observed and simulated means (Moriasi et 
al, 2007). It’s determined as follows; 

 
 
Where; 
Oi – Observed discharge; 
Pi – Predicted discharge; 
Õ – Mean of observed discharge; 
 
As is apparent in the formula, the criterion is still insensitive 
to low flows and it also returns high efficiency values even in 
poorly performing models and this results in a narrow range 
for calibration (Krause, Boyle, and Base, 2005). 

 
[b] Nash-Sutcliffe Efficiency (NSE) 
 
It is one of the most widely used despite its widely-reported 
inadequacies. It is basically the absolute difference between 
observed and predicted which is then normalized by the 
variance of the observed discharge to get rid of any bias. The 
range lies between 1 and -∞, with 1 being the perfect fit 
(Krause, Boyle, and Base, 2005). 
 

 
 
Where; 
Oi – Observed discharge 
Pi – Predicted discharge  
Õ – Mean of observed discharge 
 
The numerator shows that smaller errors will become 
smaller while larger errors will become larger. This is the 
major disadvantage of the NSE criterion as it leads to 
overestimation or underestimation depending on the 
dominant error of the model under examination. Another 
disadvantage is that it uses the observed mean in calculating 
the variance for normalization (Numerator). This means that 
for catchments with highly variable discharges, it leads to 
overestimation of the efficiency. It is therefore advised that 
the observed seasonal mean be used instead (Krause, Boyle, 
and Base, 2005). 

 
2.3.3 Error Index Criteria 
 
[a] Percent Bias (PBIAS) 
 
It measures the average negative deviation of the predicted 
data from the observed data with an optimum value of 0% 
meaning no deviation. It is calculated as follows (Moriasi et 
al, 2007). 
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Where; 
Oi – Observed discharge; 
Pi – Predicted discharge; 
RMSE-observations and Standard deviation ratio 
 
This criterion normalizes the RMSE with the standard 
deviation of the observed values. It is calculated as follows; 
(Moriasi et al, 2007) 
 

 
 
Where; 
Oi – Observed discharge; 
Pi – Predicted discharge; 
Õ – Mean of observed discharge; 

 
2.3.4 Modified Criteria 
 
[a] Modified forms of d and NSE 
 
To increase the sensitivity of both criteria, apart from using 
the logarithmic values of observed and predicted flows, 
further modifications can be done as follows 
 

 
 

 
 
Where; 

J  

Oi – Observed discharge; 
Pi – Predicted discharge; 
Õ – Mean of observed discharge; 
 
This would reduce the insensitivity to low discharges 
especially if j=1. It is also open to manipulation depending on 
the objective. For example, if the interest is flooded 
discharges, j can be higher values (Krause, Boyle, and Base, 
2005). 

 
[b] Kling-Gupta Efficiency (KGE) 
 
It is formulated by decomposition of the NSE into the various 
components and correcting the bias factors. It is calculated 
as follows; (Gupta et al, 2009) 
 

 
 

And  

 
Where; 
 

 
 

 
 
Where; 
ED – Euclidian distance from the ideal point; 
EDs – Euclidian distance from the ideal point in the scaled 
space; 

α = , a measure of relative variability of the predicted 

and observed runoff 
σs and σo – Standard deviation of predicted and observed 
runoff 
r – Linear correlation coefficient between simulated and 
observed data 

ß – Bias factor;  where µ is the mean of observed 

and simulated flows 
s – Scaling factors for the components. 

 
3 RESULTS AND ANALYSIS 
 
3.1 Model Calibration, Validation and 

Performance Ratings 
 
It is recommended that before models are evaluated, they be 
calibrated and validated and that standardized guidelines on 
the range of values of the efficiency criteria used to evaluate 
their performance be put up in advance (Moriasi et al, 2007). 
Table 2 shows the calibration and validation values for the 
NSE and PBIAS efficiency criteria.  
 

Table 2: Model calibration and validation values 

 

 
Source: Moriasi et al. 
 
The performance ratings and standardized guidelines for 
selected efficiency criteria are as shown in Table 3. Because 
the quality and quantity of the data also affect the 
performance of the model, it is recommended that the 
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performance rating be relaxed accordingly and considered in 
a much larger range in such situations (Moriasi et al, 2007). 
 
Table 3: Performance rating of selected efficiency criteria 

 

 
Source: Moriasi et al. 
 
Since models have several parameters, in the evaluation of 
their efficiency, some of the parameters may not have data to 
feed in, this necessitates them to be set to plausible values, in 
the KGE criterion, snow and moisture parameters were 
treated as such (Gupta et al, 2009). 

 
3.1.1 Model Evaluation Results 
 
The paper by Moriasi et al. (2007), evaluated the 
effectiveness of the SWAT2005 model which is used to 
determine over long periods the effect of land use in the 
watershed with special focus on solid waste management 
and average monthly stream discharges on the Leone River. 
The watershed was divided into sub-basins and the accuracy 
of the model evaluated using the NSE, PBIAS and RSR 
efficiency criteria. The results were as shown in the Table 4 
below.  
 

Table 4: Model Performance Criteria results 
 

 
Source: Moriasi et al. (2007) 
 
The results show that apart from one performance of 
unsatisfactory from the PBIAS efficiency criteria, the 
SWAT2005 performed well (between good and very good) 
by all the criteria. Generally, the calibration performance 
was better than the validation 
 
The paper by Krause, Boyle, and Base (2005) used synthetic 
data by manipulating daily streamflow discharges. The 
manipulation was done by three methods; reducing all the 
discharge values by 30% to simulate model under-

prediction, multiplying the discharges by random values 
between 0.1 and 3 to come up with 10,000 simulations and 
the third method was done by doing 136 model simulations 
for each time step. It was then divided into seven sections for 
example for falling limb, rising limb etc. This was done in 
order to mimic the common model errors. The different 
performance efficiency criteria were then applied to the 
simulated and observed values. The results for the first 
simulation are as shown in Table 5 below 
 

Table 5: Model Performance rating for simulation 1 
 

 
Source: Moriasi et al. 
 
The results of the comparison of the second simulation 
against the observed discharges yielded the following 
efficiency criteria values shown in Table 6. Since each time 
step produced 10,000 simulations, the efficiency criteria 
were run against these numerous predictions. 
 

Table 6: Model Performance rating for simulation 2 
 

 
 
A comparison of NSE with coefficient of determination for 
simulation 2 showed only weak correlation, meaning that 
one cannot rely on only one criterion for evaluation. This 
contrasts with the weighted value of coefficient of 
determination which shows a strong correlation with NSE. 
The values of lnNSE show no correlation with other criteria 
although its values are accurate. This means that it is 
sensitive to other parts of the observed and predicted data 
(low values) making it suitable to be used with the other 
criteria e.g. (NSE and d) which show sensitivity high values. 
The values of NSEj=1 and dj=1 show that they give more 
average evaluation of the model performance without being 
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influenced by the low or high discharges compared to NSE 
and d.  
 
For the third simulation, the observed and predicted 
discharged were divided into sections depending on the 
trend. The efficiency criteria was then applied to the 
different sections and the results are as shown in Table 7 
below 
 

Table 7: Model Performance rating for simulation 3 
 

 
Source: Moriasi et al. 
 
Figure 4 shows the evolution of the different efficiency 
criteria with respect to the discharge hydrograph. It shows 
that between time step 0 and 1 when the hydrograph rises 
uniformly, all the criteria react almost uniformly. At time 
step 2 where there is a small peak the biggest reaction is 
shown by d and NSE, signalling sensitivity to high flows 
which is again witnessed in time step 4. The low flows only 
generated minor reactions especially from NSErel. and drel. 
Between steps 2-3 and 6-7. 
 

 
 

Figure 4: Evolution of efficiency criteria against discharge 
hydrograph 

The results show that NSE, coefficient of determination and 
index of agreement are very sensitive and biased towards 
high flows. The relative values i.e NSErel. and drel. Show 
more sensitivity to low flows than high flows (especially 
NSErel.). Similar sensitivity was shown by lnNSE. The 
modified NSEj=1 and dj=1 showed a balanced reaction for 
both low flows and high flows. 
 
In summary to the three simulations, the following 
conclusions can be drawn; 
 
1) In the first simulation only two criteria, wr2 and NSEj=1, 

produced significantly lower values reflecting the under-
estimation of the output while the rest produced very 
high scores, 1-0.81 

2) In the second simulation, it was again apparent that wr2 

performed better than r2 but lnNSE was a better 
predictor of efficiency in low flows than NSE; 

3) In the third simulation, lnNSE still showed better 
sensitivity to low flows and together with NSErel are 
suited to low flow evaluations. 

 
The paper by Gupta et al. (2005) first calibrated the model 
and then evaluated them. The efficiency values in the two 
periods were then compared and it shows deterioration for 
both KGE and NSE. It can be explained by over-fitting during 
calibration and non-stationarity between both periods. 

 
4. CONCLUSION AND RECOMMENDATIONS 
 
It is apparent that none of the efficiency criteria can be used 
in isolation as they all show weaknesses and bias in low 
flows and high flow. NSE, index of agreement and Co-
efficient of determination show a marked bias towards peak 
flows. The use of Co-efficient of determination alone will give 
unrealistically high model performance valued and this need 
to be tempered by a weighted value w.  
 
For models which use variables which fluctuate seasonally 
like snow-melt, the NSE will produce high efficiency score. It 
is advisable that seasonal or climatological mean be used 
instead (Gupta et al, 2005). 
 
The bias of NSE towards high flows can be reduced by using 
logarithmic values lnNSE. This somewhat increases 
sensitivity to low flows but the use of the relative form 
NSErel. can be used in models evaluating predominantly low 
flow discharges as it is un-reactive to peak flows (Krause, 
Boyle, and Base, 2005). 
 
A more global measure of model performance was found to 
be NSEj=1. and dj=1 as they always give average values 
between those criteria sensitive to low flows and those 
sensitive to high flows. However, the major drawback is that 
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they always give low scores and therefore not very attractive 
especially for calibration. 
 
From the paper by Moriasi et al, it can be concluded that the 
criteria NSE, PBIAS and RSR in combination with other 
methods such as graphical techniques should be used. In 
summary, models can be said to be satisfactorily accurate if 
NSE>0.5, RSR<=0.7 and PBIAS+-25 although for PBIAS, 
errors in observed discharged data should be taken into 
account. 
 
It is recommended that model efficiency criteria should be 
project-specific so as to increase the efficiency of evaluation 
(Krause, Boyle, and Base, 2005). 
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