
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 11 | Nov -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 152

Overview Of Web Password Hashing Using Salt Technique

Diksha.S.Borde1, Poonam.A.Hebare2, Priyanka.D.Dhanedhar3

1,2,3Dept. of Master of Computer Application, MGM’s Jnec college, Maharashtra, India
---***---

Abstract We can see in this world there are so many
problem or issues are occurred about security. We send our
data one person to another person that time there are more
possibilities to lick our data on internet. For solve this problem
we use in this paper some algorithms with the help of
algorithm there are no chance to hack data or stole data.
There are various method for secure data like hash, salt,
SHA256, SHA512.

Key Words: Salt technique, cryptography, hash function,
SHA, web security.

1.INTRODUCTION

“Web Password Hashing” it is a process of secure our web
data. With the help of various techniques. There are some
algorithm are used to secure password or secure data like
cryptography , hashing. There are also some algorithms
which is fail in market and we should not use this algorithms
like MD5(Merkl Damaged),SHA1(Secure Hash Algorithm).In
this algorithm there are more possibilities hack data. To
avoid this problem we use various method for secure data
like hash, salt, SHA256, SHA512.

1.1 What is password hashing? 1

Hash algorithms are one way functions. They try some
amount of data into a fixed-length "fingerprint" that cannot
be reversed. They also have the property that if the input
changes by even a little bit, the resulting hash is completely
different (see the example below). This is great for
protecting passwords, because we want to store passwords
in a form that protects them even if the password file itself is
compromised, but at the same time, we need to be able to
verify that a user's password is correct[2].

For example:

The general example for account registration and
verification in a hash-based account system is as follows:

1. The user creates an account.

2. Their password is hashed and stored in the database.
At no point is the plain-text (unencrypted) password
always written to the hard drive.
3. When the user tries to login, the hash of the password
they entered is checked against the hash of their real
password (password retrieved from the database).
4. If the hashes match, the user is access. If not, there
message is display invalid login
5. Steps 3 and 4 repeat for everytime when attacker
login to site it will display invalid login

 Only cryptographic hash functions may be used to
implement password hashing. Hash functions like SHA256,
SHA512, RipeMD, and WHIRLPOOL are cryptographic hash
functions.

 If storing password in a plain text or is compromised
through easy encryption method then there are possibilities
of decrypting of password[2].

2. The Algorithms 2

MD5

Firstly designed as a cryptographic hashing algorithm, first
published in 1992, MD5 has been shown to have general
faults, which make it relatively easy to break.
Its 128-bit hash values, which are quite easy to produce, are
more commonly used for file verification to make sure that a
downloaded file has not been tampered with. It should not
be used to secure passwords[3].

SHA-1

Secure Hash Algorithm 1 (SHA-1) is cryptographic hashing
algorithm firstly design by the US National Security Agency
in 1993 and published in 1995.It generates 160-bit hash
value that is typically rendered as a 40-digit hexadecimal
number. As of 2005, SHA-1 was considered as no longer
secure as the exponential increase in dividing power and
sophisticated methods meant that it was possible to perform
a so-called attack on the hash and produce the source
password or text without spending millions on computing
resource and time[3].

SHA-2

The successor to SHA-1, Secure Hash Algorithm 2 (SHA-2) is
a family of hash functions that produce longer hash values

hash("
hbllo")
=

58756879c05c68dfac9866712fad6
a93f8146f337a69afe7dd238f3364946366

hash("
waltz"
) =

c0e81794384491161f1777c232bc
6bd9ec38f616560b120fda8e90f383853542

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 11 | Nov -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 153

with 224, 256, 384 or 512 bits, written as SHA-224, SHA-256,
SHA-384 or SHA-512.

It was first published in 2001, designed by again by the NSA,
and an effective attack has yet to be demonstrated against it.
That means SHA-2 is generally recommended for secure
hashing[3].

SHA-3, while not a replacement for SHA-2, was developed
not by the NSA but by Guido Bertoni, Joan Daemen, Michaël
Peeters and Gilles Van Assche from STMicroelectronics and
Radboud University in Nijmegen, Netherlands. It was
standardised in 2015[3].

Bcrypt

As computational power has increased the number of brute-
force guesses a hacker can make for an effective hashing
algorithm has increased exponentially.

Bcrypt, which is based on the Blowfish cipher and includes a
salt, is designed to protect against brute-force attacks by
intentionally being slower to operate. It has a so-called work
factor that effectively puts your password through a
definable number of rounds of extension before being
hashed.

By increasing the work factor it takes longer to brute-force
the password and match the hash. The theory is that the site
owner sets a suitably high-enough work factor to reduce the
number of guesses today’s computers can make at the
password and extend the time from days or weeks to months
or years, making it prohibitively time consuming and
expensive[3].

PBKDF2

Password-Based Key Derivation Function 2 (PBKDF2),
developed by RSA Laboratories, is another algorithm for key
extension that makes hashes more difficult to brute force. It
is considered slightly easier to brute force than Bcrypt at a
certain value because it requires less computer memory to
run the algorithm[3].

Scrypt

Scrypt like Bcrypt and PBKDF2 is an algorithm that extends
keys and makes it harder to brute-force attack a hash. Unlike
PBKDF2, however, scrypt is designed to use either a large
amount of computer memory or force many more
calculations as it runs.

For valid users having to only hash one password to check if
it matches a stored value, the cost is small. But for someone
attempting to try 100,000s of passwords it makes cost of
doing so much higher or take prohibitively long.

Username Password
User1 Password123

User2 Password456

Saltvalue String to
be
hashed

Hashed
value=SHA256(passw
ord+salt value)

User1 E1F1532E
5765

Password
123+ salt
value

72AE25495A7891C406
22D4F493

User2 84C03D03
40DF

Password
456+ salt
value

B4B660AB670867E9C
732F7DE8

There are also some algorithms which is fail in market and
we are not use this algorithms like MD5 (Merkl Damaged),
SHA1(Secure Hash Algorithm). If we used this algorithm
there are some chance to taken our personal data which is
available on web or browser.

To avoid this problem we use here salt technique. Salt
technique is use for secure data. Some people are use so easy
passwords like date of birth, mobile number or may be
personal information. It is easy to attacker broken this
password so avoid this problem we use salt technique[3].

Example:

If we created account on facebook when we entered the id
and password salt technique also add their own password to
make it more difficult for attacker which stole the
passwords that’s why the attacker cant access the password
and our data is protected by salt technique.
With the help of salt technique we can avoid SQL injection
attack, dictionary attack, birthday attack.

2.1 Methods of creating salt steps:

1. Get Password
2. Generate salt using trusted method or function.
3. Append salt to original password.
4. Generate salt hash password using appropriate hash
function.
5. Store salt and salt hash in database.

Example: How Password Store

 The first table has two username and password
combinations.

The salt value is 8 bytes(64 bit) long. The hashed value is the
hash of the salt value appended to the plaintext password.
Both the salt value and hashed value are stored.

Userna
me

https://en.wikipedia.org/wiki/Blowfish_(cipher)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 11 | Nov -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 154

3. The WRONG Way: Short Salt & Salt Reuse

The most common salt implementation errors are reusing
the same salt in multiple hashes, or using a salt that is too
short.

1) Salt Reuse

A common mistake is to use the same salt in each hash.
Either the salt is hard-coded into the program, or is
generated randomly once. This is unsuccessful because if
two users have the same password, they'll still have the
same hash. An attacker can still use a reverse lookup table
attack to run a dictionary attack on every hash at the same
time. They just have to apply the salt to each password guess
before they hash it. If the salt is hard-coded into a popular
product, lookup tables and rainbow tables can be built for
that salt, to make it easier to crack hashes generated by the
product.

A new random salt must be generated each time a user
creates an account or changes their password[2].

2) Short Salt

If the salt is too short, an attacker can build a lookup table for
every possible salt. For example, if the salt is only three ASCII
characters, there are only 95x95x95 = 857,375 possible salts.
That may seem like a lot, but if each lookup table contains
only 1MB of the most common passwords, collectively they
will be only 837GB, which is not a lot considering 1000GB
hard drives can be bought for under $100 today.

For the same reason, the username shouldn't be used as a
salt. Usernames may be unique to a single service, but they
are predictable and often reused for accounts on other
services. An attacker can build lookup tables for common
usernames and use them to crack username-salted hashes.
To make it impossible for an attacker to create a lookup table
for every possible salt, the salt must be long. A good rule of
thumb is to use a salt that is the same size as the output of
the hash function. For example, the output of SHA256 is 256
bits (32 bytes), so the salt should be at least 32 random
bytes[2].

3. CONCLUSIONS

Salt provide security.
Salt technique prevent the attackers or helpful for avoid the
dictionary attack, birthday attack.
Salt hash password prevents the attacker by mean of - the
attacker will now have to recalculate their entire dictionary
for every individual account they're attempting to crack. But
salt can only help against prebuilt dictionaries, if intruder
gets access to our system and if uses brute force attack, than
salt will not provide must security.

REFERENCES

[1] A cryptography application using salt hash technique, by
Pritesh .N. Patel, Jigishak Patel.

[2] Salted Password Hashing-
http://www.codeproject.com/Articales/704865/salted-
password-Hashing-Doing-it-Right.

[3]Passwords and hacking: the jargon of hashing, salting and
SHA-2 explained
https://www.theguardian.com/technology/2016/dec/15/p
asswords-hacking-hashing-salting-sha-2

[4] Stronger Password Authentication using Browser
Extensions by Blake Ross, Collin Jackson, Nick miyake, Dan
Boneh, Jonh C Mitchell .

[5] Search Security,
http://searchsecurity.techtarget.com/definition/salt,
Retrived 15th Oct, 2011

BIOGRAPHIES

 Diksha Sukhdeo Borde
 MCA TY
 MGM’ JNEC Aurangabad

 Poonam Ashok Hebare
 MCA TY
 MGM’ JNEC Aurangabad

 Priyanka Dilip Dhanedhar
 MCA TY
 MGM’ JNEC Aurangabad

http://www.codeproject.com/Articales/704865/salted-password-Hashing-Doing-it-Right
http://www.codeproject.com/Articales/704865/salted-password-Hashing-Doing-it-Right

