
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 11 | Nov -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1292

CHANGES IN NECESSITIES TRADE AFTER MIGRATING TO THE SaaS
MODEL

S. P. SANTHOSHKUMAR1, G. RAMYA2

1Assistant Professor, Dept. of CSE, Rathinam Technical Campus, Coimbatore, India

2Assistant Professor, Dept. of IT, Rathinam Technical Campus, Coimbatore, India
---***---

Abstract: Service-oriented architectures are widely
considered to be the determining trend in software
engineering. Vendors of software products want to benefit by
migrating to cloud environments. However, when
transforming an existing software system from the Software as
a Product model to the Software as a Service model the
software engineering process changes. While the process in
general has been researched sufficiently, very low effort has
been put into understanding the impact on requirements
elicitation. This paper investigates the necessary changes in
the requirements engineering process and provides a
systematic approach for a successful transformation.
Furthermore, it discusses the new benefits in requirements
elicitation that are inherent in a cloud environment. The paper
then discusses the identified problems and developed solutions
with regards to deduced guidelines and best practices. We
conclude that the requirements engineering process profits
from a systematic transformation when migrating a
traditional software product to the Software as a Service
model.

Keywords: Software Engineering, Requirements
Engineering, Software as a Service (SaaS), Cloud
Environment, Reengineering.

1. INTRODUCTION

Studies show that 20% of the IT companies consider

using Software as a Service (SaaS) as important or very
important. For the majority of the IT specialists the topic is
of average importance or lower. Nevertheless, this is due to
reservations regarding security (76%), performance and
availability (64%) and integration with existing systems
(62%), as these companies describe. Another study points
out that hiring a software instead of purchasing yields in a
saving of 45% of the customer’s expenses in a three year
time span.

Figure 1: The cloud computing model

Figure 1: The cloud computing model [1] [10] SaaS is an
element of the Internet-based computing model Cloud
Computing. A cloud computing environment is essentially
characterized by on-demand self-service, broad network
access, resource pooling (using multi-tenancy), rapid
elasticity and measured service according to the National
Institute of Standards and Technology (NIST) [10]. To
complete the cloud infrastructure two further elements –
besides SaaS – have been identified by the NIST. The
provision of runtime environments, libraries, other services
and software tools by a certain provider is called Platform as
a Service (PaaS). The customer of a PaaS has hardly any
management control over the underlying platform
components, but full control over the deployed applications
[10]. Another step away from the end user is the
Infrastructure as a Service (IaaS), which completes the cloud
computing model. The IaaS provider is accountable for
storage and network facilities and other hardware
components, while the customer can install and run
arbitrary software, including even operating systems [10].
Following the SaaS model, both the software system itself
and the user data are hosted and stored centrally. Instead of
purchasing a product, the user rents a software system, IT
infrastructure and annexed services from the vendor and is
typically charged on a pay-per-use principle [10]. A SaaS
based software system, however, differs from one that is
developed under the Software as a Product (SaaP) model in
many ways. Its architecture is mainly database-oriented,
middleware-oriented, PaaS-based and service-oriented

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 11 | Nov -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1293

Figure 1. This result in differing non-functional
requirements compared to classical software products.
When transforming a software product into a software
service, the vendor has to consider these changes in
architecture and requirements [4] and in the whole software
development process [7]. In this paper, we collect
differences in software requirements between the two
models. For this purpose, we have conducted a review of
pertinent literature. We also studied research on existing
software migration processes and developed conclusions on
how to consider variations in requirements in such process
changes. The aim of the present work is to provide a generic
approach that helps those software developers who want to
migrate their software product to the SaaS model. Section 2
covers the background information auxiliary for a
comprehension of the SaaS model and the concomitant
changes in software requirements. Section 3 outlines the
work related to the requirements engineering process in a
SaaS environment. In Section 4 the necessary changes in a
requirements engineering process are presented and such a
transformation is systemized. Section 5 discusses the
developed process by means of deduced guidelines and best
practices. In Section 6 limitations of the proceeding are
discussed and Section 7 draws conclusions and provides
future work.

2. BACKGROUND

2.1. Software as a Service

For many years, software has been produced in a

supply-side oriented manner. A software vendor puts effort
into the requirements elicitation for a certain problem,
develops and tests the software and releases the final
product to the market. The customer or the software
vendor’s support team installs a copy of the software
product at the customer’s infrastructure after purchasing a
licence. While minor software updates are usually conducted
via an Internet interface and included in the one-time price,
major upgrades often require buying a new software product
[3]. The SaaS model, in comparison, is the trend in software
engineering of the 21st century that challenges this
traditional model [1]. The customer of a SaaS-based software
purchases a usage right for a certain time span. In return, the
vendor grants access to the online service, often combined
with an individual number of accesses depending on the
customer’s price plan. Since its first mentions in research in
the 2000s, SaaS has gained more and more attention both
from scientific and production points of view. While different
approaches – such as iterative and incremental development
processes and modular software products – have been
established to address the issues of developing and
deploying more complex software products, the SaaS model
is a radical shift of the means by which software is
engineered. Providing Software as a Service in contrast to a
product, at a first glance, is a manner of distribution policy
business issues like time to market, customer involvement

and release cycles. The service-orientation of software,
however, also comes with major paradigm changes
regarding the software development. The SaaS model utilizes
services as the rudimentary factor for organizing the
complexity of software. The underlying principle of software
design is Service-oriented architecture (SOA), an
architecture in which loosely coupled but strictly separated
software components (usually single business functions)
interact via public interfaces as composite services. This
allows for binding components only when they are needed
and in a scalable way. SOA itself is platform-agnostic and
does not define the manner of service orchestration, security
etc. These services are made available by service providers
that come up with the service infrastructure and the
implementation and provide the interface description for
access over the Internet (web-based). In order to publish
and find integration-ready services, a common service
directory is needed (see Figure 2). Services itself are
composed of other services recursively [3].

2.2. Changed Requirements

Compared to the traditional SaaP model, SaaS relies on a

different infrastructure and varies in distribution and access
(see Section 2.1). When migrating a software product to the
SaaS model, one usually intends to maintain most of the
software’s functionality [9]. As a result, the differences in the
software engineering process narrow down to nonfunctional
requirements [2] and other aspects affecting the software
development process like operation, management and
architecture, albeit not functional requirements. Those
aforementioned differences in non-functional requirements
are basically due to three factors:

1. SaaS-based software is necessarily hosted in cloud

environments either operated by the software vendor itself
or by a third party offering PaaS solutions (see Section 1). A
few very large companies offering software services unify
the PaaS part and the SaaS part under a single roof, such as
the on-demand video streaming platform Netflix. These
companies act as platform providers for themselves.

2. Such software is primarily distributed as a web-based

application using the Internet and associated protocols for
data transmission.

3. A high proportion of software offered as a service is

realized as browser-supported applications, meaning that no
dedicated software is necessary on the client’s device except
the already existing web browser.

Factor 1 results in a focus of the non-functional

requirements on security, data confidentiality, privacy and
compliance, since the server location determines legal
aspects such as data protection laws and a company’s
compliance regulations [7]. In addition, a cloud service
provider is a more probable victim of security attacks than a

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 11 | Nov -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1294

decentralized structure or a company’s private network.
Albeit it is harder to conduct successful attacks on
professional cloud service providers, special precautions
have to be considered. Most differences in non-functional
requirements are a consequence of Factor 2: Multi-tenancy,
user concurrency, configurability, scalability, reliability,
performance, availability, compatibility, interoperability,
portability, effciency and immediacy [5] [7] [8]. Other
aspects include continuous evolution, the involvement of a
higher number of stakeholders and increased usage
monitoring [7]. Special demands on aesthetics and user
interface design and the limitations of browser-supported
applications are influenced by Factor 3.

3. RELATEDWORK

Back in 2000, Bennett et. al [3] have recognized trends

in software development that are influenced by the emerging
Internet. They develop a future vision in which software is
flexible, interactive, personalized and self-adapting and the
software engineering is demand-led, service-oriented and
focusses on the requirements elicitation. In their conclusion
the authors point out that future work should focus on the
necessary changes in the software engineering processes.
Seminal work on the basic concepts behind SOA. As one of
the first authors he described the effects of SaaS on business
processes and on software engineering. This conclusion that
the SOA requires strong alterations in software design.
Olsen, the author of has investigated necessary paradigm
changes from a business point of view. He outlines that a
SaaS-based software system creates a very different
customer relationship than a SaaP-based. Olsen makes the
update mechanisms responsible as they require long-term
commitment of the vendor and facilitate non-disruptive
upgrades. The author also points out the advantages of
modularity and rapid releases for the customers. In their
study [1] Armbrust et al. present dentitions for the different
aspects of the topic cloud computing. They locate the role of
SaaS and list benefits as well as obstacles and demonstrate
means of how to avoid them. Since these seminal works,
research has made a lot of progress. In their study [7] Kumar
and Sangwan present traditional software engineering
process models and main concepts (e.g. iterative
development). They continue collecting aspects which make
the development of web-based applications different from
traditional software. According to the authors the main
aspect is the continuity of the process that also requires a
systematic, repeatable and iterative process. Together with
lists of attributes and characteristics of web-based
applications they provide a very general adaption of a
traditional software engineering process model towards a
model which is suitable for web-based applications.
However, the authors fail to present a detailed process as a
result that can be used for developing such applications.
They found out that the research interest has increased over
the last years. They identify the main challenge for cloud-
based software engineering to be the lack of standardization.

E.g. choosing a PaaS provider may result in platform lock-ins
where customers cannot easily switch to another service
provider. Besides a grouping and the presentation of
challenges for SaaS de

Velopers, the authors provide definitions of the terms

SaaS and SOA. They conclude that a research gap exists
regarding the formalization of a complete reengineering
process in terms of reconstructing the software for a new
platform. Balian and Kumar [2] group and review studies in
the field of SaaS development. They introduce literature
which focusses on development from scratch as well as
studies for migration and reengineering. Furthermore, the
authors discuss research on quality models for SaaS and
draw the conclusion that the adaption of software
engineering process models, quality models and metrics for
SaaS is not sufficient. The most relevant recent works have
been conducted in the field of comparing the software
engineering processes of the SaaP model and the SaaS model.
Tariq et al. address the impact a cloud environment has on
the requirements of an application. They list technical non-
functional requirements, legal concerns and other issues
from the data management. The authors then categorize
these topics and identify the new stakeholder cloud service
provider. As a result, they propose an addition to the
Capability Maturity Model Integration (CMMI) reference
model that includes a checklist for the new stakeholders.
Research has provided detailed descriptions of the SaaP
model and the fundamentals behind the SaaS model. Recent
work also exists which covers the transformation of a service
oriented system into cloud-based software that follows the
SaaS model [4] [5] [9]. However, there is no process support
for migrating an existing software product into such service-
based software. Furthermore, we could not find any
migration strategies that cover the differences in the
requirements elicitation process. This paper intends to fill
this gap by providing a systematic and generic approach for
sustainably migrating a traditional software product to the
SaaS model. This approach covers the software adaptions as
well as the necessary changes in the existing software
engineering process in a clear and repeatable way with focus
on the changed requirements elicitation.

4. REQUIREMENTS ENGINEERING PROCESS FOR
SaaS

4.1. Differences Between Processes

This section strictly focusses on the requirements

engineering process. However, some aspects affect different
phases of the software engineering process as well and
others are as a matter of fact just side issues from
requirements’ point of view. Nevertheless, all aspects are
included in the enumeration in order to provide a holistic
view of the differences between the traditional and the SaaS-
based requirements engineering process. This
understanding of the requirements and their importance is

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 11 | Nov -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1295

crucial for the general software development process. First
of all, in comparison with the SaaP model, SaaS involves
more kinds of stakeholders. Kumar and Sangwan [7] identify
those as analysts, graphic designers, customers, marketing,
security experts etc. But the requirements engineering
process not only has an expanded stakeholder basis. As
mentioned in Section 2.2, SaaS comes with a stronger
customer involvement and longterm relationships between
the SaaS provider and the end user. The user is motivated to
provide feedback – directly or indirectly via usage
monitoring –, since a feature enhancement can be expected
and he/she will profit from it without extra cost and in
foreseeable time. The integration of bug fixes and new
features is seamless and without interruptions because the
software is centrally hosted on the company’s servers
instead of on the customer’s infrastructure. They are
furthermore integrated without time delay since time to
market is reduced significantly due to the fact that new
versions are released early and often and are not considered
to be a distinct software product. The difference between
enhancements and bug fixes becomes indistinguishable to
the end user. These less disruptive updates, which
respectively approach just a few problems but in return
happen more frequently, require fewer amount of retraining
on the end user’s side. Moreover, the centrally hosted, multi-
tenant software as a service offers additional opportunities
in testing new features. The acceptance can be evaluated by
rolling out the feature to just a selected proportion of users
and awaiting their feedback. Even providing two or three
variations of a feature to several user groups is possible and
allows for comparing differences and selecting the
implementation with the highest user approval.

4.2 A systematic transformation of the
requirements engineering process follows
these steps:

Step 1: Establish a paradigm change with respect to highly
fluctuating requirements. Developers who are used to
traditional software products need to adapt to the non
persistence of requirements in the SaaS context. The vicinity
to agile development and the new methods of elicitation
make the requirements volatile.

Step 2: Integrate requirements engineering into an iterative
and incremental software engineering process. Such a
software engineering process is not a unique characteristic
of service-based software and can be found in traditional
software development as well. However, the volatile nature
of the requirements and the frequent release cycles demand
such iterations and regular software increments.

Step 3: Identify and prioritize stakeholders using systematic
methods.

Step 4: Involve customers through integration into the
requirements engineering process. Invitations for featureand

bug reports are crucial for taking advantage of the migration
to SaaS. The users need to get the feeling that their
involvement can have an impact on future feature
enhancements and short-term bug fixes.

Step 5: Implement instruments for user feedback (e.g. usage
monitoring, feedback forms). In order to encourage
customers to provide feedback (see Step 4), such a culture
needs to be established. This can be achieved by e.g.
providing feedback buttons on single features, offering side-
wide available feedback forms and by using the many ways
of usage monitoring offered by cloud software.

Step 6: Develop mechanisms for seamless update
integrations. As stated before, a major benefit of cloud-
hosted software is the deployment in the hand of the
software developers. Thus, the integration of updates comes
handy: The new software pieces only need to be installed
once and on a predictable server environment – the
companies cloud server – and not the client’s infrastructure.
In addition, the high frequency of small updates makes it
easy to integrate without shutdown times, since the number
of lines of code or the changes in the database design are
proportionally smaller. The short downtime of parts of the
system is less noticeable than a traditional maintenance
downtime of the whole system.

Step 7: Develop support for software variations per user
group for acceptance testing reasons. The new requirements
engineering process makes it possible to develop multiple
versions of unknown acceptance and roll out the variations
to different user groups. Acceptance can then be tested using
the methods of Step 5.

5. DISCUSSIONANDBESTPRACTICES

The main goal of this paper was to outline the
differences between the requirements engineering process
of a traditional software product and the process of a
software service and to provide a systematic approach for
migrating from one to the other. Following the presented
approach reduces the risk for leaving out necessary changes
in the requirements engineering process. For those who
consider migrating a software product but have not decided
yet, the approach defines the scope of changes which would
be intrinsic to a planned migration. As such this paper’s
approach others benefits that cannot be found in literature
as of today. In order to accommodate the transformation
approach we provide a collection of best practices, which
came across during literature review, for some of the steps:
Step 2 is suited best by applying agile software development
methods, such as Scrum. The stakeholder analysis of Step 3
is well conducted when using socio-diagrams or power
matrices. The authors of [6] provide an extensive description
of their process of stakeholder identification and impact
analysis. The measurements already mentioned in Step 5 for
motivating users to provide feedback have been successfully

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 11 | Nov -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1296

conducted in practice and can be recommended. That is
implementing application-wide feedback forms and applying
usage monitoring.

6. LIMITATIONS

This approach covers the requirements engineering

process, which is only one part of others in the whole
software development process. The migration of software
products to the cloud can still fail due to other implications
of such a process migration. Another limitation of this
approach is the focus on webbased service-oriented
architectures. This circumstance is owed to the experiences
from the literature review. Most research does not
differentiate between SaaS and web-based systems, which
makes the development of a transformation approach
generalized for other kinds of customer interface nearly
impossible. 7.

7. CONCLUSION AND FUTURE WORK

The way we practice software engineering has
changed dramatically. Developing SaaS is one of the reasons
why changes in software engineering processes are
indispensable. The requirements elicitation of a software
realized as a service differs to the traditional product in
many ways, some of them are fundamental (see Section 2.2).
However, the differences come with numerous advantages,
such as longterm customer relationships, focus of resources
and more frequent feature enhancements. The requirements
engineering process requires transformation when
migrating from an existing software product to the SaaS
model. This paper has offered a systematic approach for this
transformation that can be used by software developers who
want to adapt the way they determine and meet the
requirements of their software system. Future work is to
research on how to combine the benefits of these new
requirements elicitation methods with agile software
engineering processes that already focus on iterative and
incremental development.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffth, A. D. Joseph, R. Katz, A.
Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, et al.
A view of cloud computing. Communications of the ACM,
53(4):50–58, 2010.

[2] N. Baliyan and S. Kumar. Towards software engineering
paradigm for software as a service. In Contemporary
Computing (IC3), 2014 Seventh International
Conference on, pages 329–333. IEEE, 2014.

[3] K. Bennett, P. Layzell, D. Budgen, P. Brereton, L.
Macaulay, and M. Munro. Service-based software: The
future for flexible software. In Software Engineering

Conference, 2000. APSEC 2000. Proceedings. Seventh
Asia-Pacific, pages 214–221. IEEE, 2000.

[4] M. A. Chauhan and M. A. Babar. Migrating service-
oriented system to cloud computing: An experience
report. In Cloud Computing (CLOUD), 2011 IEEE
International Conference on, pages 404–411. IEEE,
2011.

[5] M. A. Chauhan and M. A. Babar. Towards process
support for migrating applications to cloud computing.
In Cloud and Service Computing (CSC), 2012
International Conference on, pages 80–87. IEEE, 2012.

[6] Khajeh-Hosseini, D. Greenwood, and I. Sommerville.
Cloud migration: A case study of migrating an enterprise
it system to iaas. In Cloud Computing (CLOUD), 2010
IEEE 3rd International Conference on, pages 450–457.
IEEE, 2010.

[7] S. Kumar and S. Sangwan. Adapting the software
engineering process to web engineering process.
International Journal of Computing and Business
Research, 2(1), 2011.

[8] J. Y. Lee, J. W. Lee, D. W. Cheun, and S. D. Kim. A quality
model for evaluating software-as-a-service in cloud
computing. In Software Engineering Research,
Management and Applications, 2009. SERA’09. 7th ACIS
International Conference on, pages 261–266. IEEE,
2009.

[9] G. Lewis, E. Morris, and D. Smith. Service-oriented
migration and reuse technique (smart). In Software
Technology and Engineering Practice, 2005. 13th IEEE
International Workshop on, pages 222–229. IEEE, 2005.

[10] D. Ma. The business model of software-as-a-service.
In Services Computing, 2007. SCC 2007. IEEE
International Conference on, pages 701–702. IEEE,
2007. [11] P. Mell and T. Grance. The nist definition of
cloud computing. Special Publication 800-145, 2011.

