RIET Volume: 04 Issue: 11 | Nov -2017 www.irjet.net p-ISSN: 2395-0072

An Experimental study on uses of Quarry Dust to replace sand in concrete

Naushad Khan¹, Ruchi Chandrakar²

¹M.Tech Studenet, Civil Engineering Dept, Kalinga University, New Raipur, C.G., India ²Asst Professor, Civil Engineering Dept, Kalinga University, New Raipur, C.G., India

_____***____

Abstract - - This experimental study presents the variation in the strength of concrete when replacing sand by quarry dust from 0% to 100% in steps of 10%. M20 and M25 grades of concrete were taken for study keeping a constant slump of 60mm. The compressive strength of concrete cubes at the age of 7 and 28 days were obtained at room temperature. Also the temperature effect on concrete cubes at 100° C on 28th day of casting was carried out to check the loss of strength. From test results it was found that the maximum compressive strength is obtained only at 50% replacement at room temperature and net strength after loss due to hike in temperature was above the recommended strength value due to 50% replacement itself. This result gives a clear picture that quarry dust can be utilized in concrete mixtures as a good substitute for natural river sand giving higher strength at 50% replacement.

Key Words: Concrete, quarry dust, river sand, compressive strength.

1.INTRODUCTION

Quarry dust is a byproduct of the crushing process which is a concentrated material to use as aggregates for concreting purpose, especially as fine aggregates. In quarrying activities, the rock has been crushed into various sizes; during the process the dust generated is called quarry dust and it is formed as waste. So it becomes as a useless material and also results in air pollution. Therefore, quarry dust should be used in construction works, which will reduce the cost of construction and the construction material would be saved and the natural resources can be used properly. Quarry dust has been used for different activities in the construction industry, such as building materials, road development materials, aggregates, bricks, and tiles.

1.1 literature Review

The suitability of quarry dust as a sand replacement material shows that the mechanical properties are improved and also elastic modulus. The compressive strength achieved optimum by replacing fine aggregate with quarry dust in ratio of 60:40 as done by Hmaid Mir

Felekoglu et al. [2] observed that the incorporation of quarry waste at the same cement content generally reduced the super plasticizer requirement and improved

the 28 days' compressive strength of SCC. Normal strength SCC mixtures that contain approximately 300-310 Kg of cement per cubic meter can be successfully prepared by employing high amount of quarry waste. Sukumar et al. [3] found that the relations have been established for the increase in compressive strength at premature ages of curing (12 h to 28 days) for different grades of SCC mixes and are compared with the IS Code formula for straight concrete as per IS: SP 23-1982. Ho et al. [4] explained that the granite fines can be used in the SCC production. However, it is important to spot out that, as a waste material, the properties of stone fines are likely to vary with time. Then, after that, the fineness of granite fines could solve durability problems, such as silica-alkali reactions. These two issues would require to be addressed if the material is to be used with assurance.

Utilization of quarry dust in concrete is recommended particularly in regions where sand is not easily available (Dehwah [5]).

Muhit et al. [6] determined that passing from 200 mm sieve is used as cement replacement whereas retaining from 100 mm sieve is used as sand replacement. Cement was replaced with stone dust in percentage of 3, 5, and 7 percent. Similarly, sand was replaced with stone dust in percentage of 15 to 50 with an increase of 5 percent. Test result gives that compressive strength of mould with 35% of sand and 3% of cement replacing dust increases to 21.33% and 22.76% in that order compared to the normal mortar mould at 7 and 28 days for tensile strength which increased to 13.47%.

Ukpata and Ephraim [7] identified the flexural and tensile strength properties compared with those for normal concrete. Hence, concrete proportion of lateritic sand and quarry dust can be used for construction provided the mixture of lateritic sand content is reserved below 50%. Both flexural strength and tensile strength are increased with increase in lateritic content.

According to Soutsos et al. [8], the physical characteristics of recycled destruction aggregates may unfavorably affect the properties of the blocks. However, levels of replacement of quarried stone aggregates with destruction recycled aggregates determined that it will not have significant harmful effect on the compressive strength.

International Research Journal of Engineering and Technology (IRJET)

Volume: 04 Issue: 11 | Nov -2017 www.irjet.net p-ISSN: 2395-0072

It is observed that there is consistent increase in the strength of plain concrete when natural sand is fully replaced by quarry dust (Chitlange and Pajgade [9]). Concrete containing quarry dust as fine aggregate can be effectively utilized in the construction industry with good quality materials, appropriate dosage of super plasticizer, appropriate mixing methods, and proper curing thereby ensuring sustainable development against environmental pollution (Devi and Kannan [10]).

The investigation proposes that the stone dust can be replaced up to 50% without any effect on mechanical and physical properties and the economical saving will be 56% also as discussed by Nanda et al. [11].

The study of Ilangovana et al. [12] gives attention to physical and chemical properties of quarry dust with respect to requirements of codal provision which are satisfied. The 100% replacement of sand with quarry dust gives better results in terms of compressive strength studies.

3. Test on Quarry Dust

Coarse aggregate of 20mm maximum size is used in Reinforced cement concrete work of all types of structures. This is obtained by crushing the stone boulders of size 100 to 150mm in the stone crushers. Then it is sieved and the particles passing through 20 mm and retained on 10mm sieve known as course aggregate. The particles passing through 4.75mm sieve are called as quarry dust. The quarry dust is used to manufacturing of hollow blocks. The program involves casting and testing cube specimens in each set consisting of 3 cubes. The cubes were casted using standard cubes of 150 mm × $150\,\text{mm}\,\times\,150\,\text{mm}$. Specific gravity of sand and quarry dust of 2.62 and 2.70. 53 grade cement is used for the mix. Curing was done by conventional moist curing for the concrete mix. Compression testing machine of 2000 KN capacity was used to test the cubes' specimens. The set of series are, M20 & M25 grade of concrete with 10, 20, 30, 40, 50 and 60 percentage replacement of quarry dust tested for 7 days, and 28 days is studied and the results are presented.

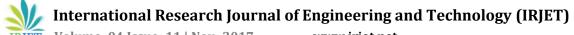
4. Discussion on Result

Table 1: Mean Compressive strength of concrete (N/mm²)

Sand:	Quarry	M20		M25	
dust		7 days	28 days	7 days	28 days
90:10		19.66	22.66	23.53	31.18
80:20		20.34	23.98	23.96	31.51
70:30		20.88	25.32	24.11	31.74
60:40		21.32	25.76	24.28	32.53
50:50		22.66	27.55	24.58	32.91
40:60		20.43	26.21	23.59	31.32

30:70	19.24	23.55	23.36	30.86
20:80	18.14	22.21	20.57	30.23
10:90	17.69	20.88	20.34	29.32
00:100	15.84	20.43	19.66	20.32

e-ISSN: 2395-0056


5. CONCLUSIONS

The concept of replacement of natural fine aggregate by the quarry dust could improve the utilization of generated quarry dust, thus reducing the requirement of land fill area and conserving the scarcely available natural sand sustainable development. Strength of the concrete is mainly dependent on bonding of the fine aggregates which fills the voids between the coarse aggregates.

From the experimental study, it is concluded that the quarry dust can be used as a replacement for fine aggregate.

REFERENCES

- 1. A. Hmaid Mir, "Improved concrete properties using quarry dust as replacement for natural sand," International Journal of Engineering Research and Development, vol. 11, no. 3, pp. 46-52, 2015. View at Google Scholar
- 2. B. Felekoglu, K. Tosun, B. Baradan, A. Altun, and B. Uyulgan, "The effect of fly ash and limestone fillers on the viscosity and compressive strength of self-compacting repair mortars," Cement and Concrete Research, vol. 36, no. 9, pp. 1719-1726, 2006. View at Publisher · View at Google Scholar · View at Scopus
- 3. B. Sukumar, K. Nagamani, and R. Srinivasa Raghavan, "Evaluation of strength at early ages of self-compacting concrete with high volume fly ash," Construction and Building Materials, vol. 22, no. 7, pp. 1394-1401, 2008. View at Publisher · View at Google Scholar · View at Scopus
- 4. D. W. S. Ho, A. M. M. Sheinn, C. C. Ng, and C. T. Tam, "The use of quarry dust for SCC applications," Cement and Concrete Research, vol. 32, no. 4, pp. 505–511, 2002. View at Publisher · View at Google Scholar
- 5. H. A. F. Dehwah, "Corrosion resistance of selfcompacting concrete incorporating quarry dust powder, silica fume and fly ash," Construction and Building Materials, vol. 37, pp. 277-282, 2012. View at Publisher · View at Google Scholar · View at Scopus
- 6. I. B. Muhit, M. T. Raihan, and M. Nuruzzaman, "Determination of mortar strength using stone dust as a partially replaced material for cement

and sand," Advances in Concrete Construction, vol. 2, no. 4, pp. 249-259, 2014. View at Publisher · View at Google Scholar

- J. O. Ukpata and M. E. Ephraim, "Flexural and tensile strength properties of concrete using lateristic sand and quarry dust," ARPN Journal of Engineering and Applied Sciences, vol. 7, pp. 324-331, 2012. View at Google Scholar
- M. N. Soutsos, K. Tang, and S. G. Millard, "Concrete building blocks made with recycled demolition aggregate," Construction and Building Materials, vol. 25, no. 2, pp. 726-735, 2011. View at Publisher · View at Google Scholar · View at Scopus
- 9. M. R. Chitlange and P. S. Pajgade, "Strength appraisal of artificial sand as fine aggregate in SFRC," ARPN Journal of Engineering and Applied Sciences, vol. 5, no. 10, pp. 34-38, 2010. View at Google Scholar · View at Scopus
- 10. M. Devi and K. Kannan, "Analysis of strength and corrosion resistance behavior of inhibitors in concrete containing quarry dust as fine aggregate," Journal of Engineering and Applied Sciences, vol. 6, no. 11, pp. 124-135, 2011. View at Google Scholar · View at Scopus
- 11. R. P. Nanda, A. K. Das, and N. Moharana, "Stone crusher dust as a fine aggregate in concrete for paving blocks," International Journal of Civil and Structural Engineering, vol. 1, no. 3, p. 613, 2010. View at Google Scholar
- 12. R. Ilangovana, N. Mahendrana, and K. Nagamanib, "Strength and durability properties of concrete containing quarry rock dust as fine aggregate," ARPN Journal of Engineering and Applied Sciences, vol. 3, no. 5, pp. 20–26, 2008. View at Google Scholar

e-ISSN: 2395-0056

p-ISSN: 2395-0072