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Abstract - The wind turbine generation system (WTGS) 
is one of the representative renewable energy systems. 
With the rapid development of WTGS and its increased 
capacity, the level of short circuit current will increase in 
distribution systems. The application of the 
Superconducting Fault Current Limiter (SFCL), would 
not only reduce the level of the short circuit current but 
also offer a reliable interconnection to the network. The 
transformer-type superconducting fault current limiter 
(SFCL) is one of the fault current limiters, and has many 
advantages such as design flexibility. In this paper, the 
effect of transformer -type SFCL on transient behavior of 
grid connected to WTGS is studied. The WTGS is 
considered as a fixed-speed system, equipped with a 
squirrel-cage induction generator. The drive-train is 
represented by two-mass model. The simulation results 
show that the transformer -type SFCL not only limits the 
fault current but also can improve the dynamic 
performance of the WTGS. 
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1.INTRODUCTION  
 
There are promising reasons that future power grids 
will be different compared to current power grids due 
to integration of renewable energy resources which 

require new controlling, monitoring and protection 
models [1-2] .Energy and environmental issues have 
become one of the main challenges facing the world. 
Concerning about environmental pollution and a 
possible energy shortage, the capacities of renewable 
energy generation systems, are being expanded. 
Generally, renewable energy resources provide both 
electric utilities and customers with a lot of benefits 
including: high quality electricity, emission reduction, 
and so on [3-6]. By increasing development of robotics 
field using renewable energy in this field also attracts a 
lot of researchers’ attention [7-10]. Free and clean 
renewable energy resources such as solar photovoltaic 

and wind generation offer flexibility to the power 
network and are the key players in reducing operating 
cost and emissions of the system [11-13]. However, 
due to their intermittency and uncertainty, integrating 
them into the power system is challenging and 
complicated [14-15]. Each renewable energy sources 
have different challenges. Some photovoltaic systems 
challenges are their optimum tilt angle [16] and effect 
of temperature on PV panels[17]. Indeed, balancing 
supply and demand in power systems including large 
amount of renewable energy penetration requires 
flexible renewable energy resources [18-27]. 
 
 The WTGS is one of the representative renewable 
energy systems. Wind energy conversion systems have 
two types: fixed and variable speed systems. As a 
simple conversion system, the fixed speed system is 
still applied at electric power industry. It is necessary 
to research power flow and transient stability of 
distribution system with wind turbine generators [28-
30]. 
 
The connection of wind turbines to the grid causes the 
fault current level increase beyond capabilities of 
existing equipment in some points of grids. This not 
only might damage the series equipment but also can 
cause negative effect on WTGS with respect to voltage 
stability [31]. 
 
Increasing fault currents often requires the costly 
replacement of substation equipment or the imposition 
of changes in the configuration that may lead to 
decreased operational flexibility and lower reliability. 
An alternative approach to reduce the fault current is 
the application of Fault Current Limiters (FCLs). Their 
application allows equipment to remain in service, 
even if the fault current exceeds its rated peak and 
short time withstand current [32-33]. Since the voltage 
sag during the fault is proportional to the short circuit 
current, an effective fault current limiter connected to 
the WTGS not only limits the large fault current but 
also improves the voltage stability of WTGS [34]. In 
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recent years, various types of FCL such as, solid state 
FCL, resonant circuit and SFCL (Superconducting Fault 
Current Limiter) have been proposed and developed 
[35]. SFCL offers a solution to limit fault current with 
many significant advantages. The application of the 
SFCL would not only decrease the stress on device but 
can also improve reliability, improve power quality, 
limit the inrush current of transformers, reduce the 
transient recovery voltage (TRV) across the CBs and 
improve transient stability of power systems by 
reducing the fault current. There are different types of 
SFCLs which are based on different superconducting 
materials and designs such as, flux-lock, transformer, 
resistive and bridge-types SFCL [36-38]. The 
transformer-type SFCL has zero impedance under 
normal conditions and large impedance under fault 
conditions (the same as other FCLs) [39-43]. But, it has 
significant advantages as follow: 
 

 large design flexibility of the current limiting 
device, 

 
 isolation between the current limiting device 

and the power transmission line, 
 

 reduction of heat loss of the current limiting 
device 

 
 prevention from instantaneously deep 

voltage drop during fault 
 
This characteristic of the transformer-type SFCL 
suppresses the instantaneous voltage drop and it is 
able to improve transient behavior of WTGS during 
fault. In this paper, the effect of transformer-type SFCL 
on transient behavior of WTGS is studied. The WTGS is 
considered as a fixed-speed system, equipped with a 
squirrel-cage induction generator. The drive-train is 
represented by two-mass model. The simulation 
results show that the transformer-type SFCL can 
improve the dynamic performance of the WTGS. 
 

2. Transformer-Type Fault Current Limiter 
 
2.1. Power Circuit of Transformer-Type SFCL 
 
The transformer-type SFCL is shown in Fig. 1. This type 
of FCL basically consists of a transformer in series with 
the line and a resistive superconducting current 
limiting device connected to the secondary winding of 
the series transformer (T). 
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Fig. 1:  Transformer-type SFCL 
 

2.2. Characteristic of Transformer-Type SFCL 
During Fault 
 
The circuit shown in Fig. 2 has been used for analytical 
studies. The source impedance has been modeled by zs 
= rs + jωLs . The impedance, zL = rL + jωLL presents the 
line and load impedance. 
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Fig. 2: Circuit topology for analytical analysis 
 
L1 and L2 presents the primary and secondary leakage 
inductance of transformer, M is the mutual inductance 
between the primary and secondary winding and RSC(t) 
is the resistance of the superconducting current 
limiting device. iL and iSC presents the line current and 
superconducting current limiting device currents, 
respectively. In this paper, the time-dependent 
resistance of the superconducting current limiting 
device during its S-N transition (transition from 
Superconducting state to Normal-conducting state) is 
represented by an exponential function as following 
expression: 
 
RSC(t) = 0                                  t<tf                             (1) 
RSC(t)=Rm(1-e(t-t1)/T)          t≥tf                                            (2) 
                            

     

Rm is the maximum value of the superconducting 
current limiting device current limiting device 
resistance; T is the time constant of the resistance 
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increase. The characteristic of the SC device used for 
analysis is shown in Fig. 3. 
 

 
 

Fig. 3:  Resistance of superconducting current limiting 
device during transition 

 

Under the normal operating condition, the 
transformer-type SFCL shows very low impedance 
because the resistance of the superconducting current 
limiting device is zero (RSC(t)=0). But, when fault 
occurs (t=tf) in the line, large fault current flows 
through the transformer. This will cause the current 
through the superconducting current limiting device, to 
increase beyond its critical level and the resistance of 
superconducting current limiting device is increased 
during fault. As a result, the transformer-type SFCL will 
limit the fault current at determined value as shown in 
Fig. 4. 

 
 

Fig. 4:  Fault current during fault and normal operation 
with using transformer-type SFCL 

 

3.Modeling of Fixed Speed Wind Turbine 
 
Fixed-speed wind turbine utilizes squirrel cage IG 
directly connected to the power grid and, therefore, the 
wind turbine rotor speed is fixed and determined by 
the frequency of the supply grid, the gear ratio and the 
IG design. IGs always need to absorb a particular 
amount of reactive power. Thus, they generally have 
fixed reactive power support devices [44]. 

3.1. Wind Speed Model 
 

One approach to model a wind speed sequence is to use 
measurements. A more flexible approach is to use a 
wind speed model that can generate wind speed 
sequences with characteristics to be chosen by the 
user. As shown in Fig. 5, wind speed is modeled as the 
sum of vwa(t) base wind speed , vwg(t) gust wind 
speed , vwr(t) ramp wind speed and vwt(t) noise wind 
speed [45]. According to these four wind speeds, the 
adopted wind speed model for a single wind turbine is, 
as follows: 

 
vw (t) = vwa (t) + vwr (t) + vwg (t) + vwt (t)                     (3) 
 

 
 

Fig. 5:  Wind Speed Model 
 

3.2. Wind Turbine Model In general, the relation 
between described, as follow [46]: 
 

Pwt = 
2


.Awt.Cp(λ,θ)νw3                                              (4) 

where, Pwt is the power extracted from the wind, ρ is 
the air density, vw is the wind speed, CP is the 
performance coefficient or power coefficient, λ is the 
tip speed ration, Awt = πR2 is the area covered by the 
wind turbine rotor, R is the radius of the tip speed 
ration and λ is defined, as follows: 
 

 Pwt= r

w

R

v

                                                                         (5) 

 
where, ωr is the angular mechanical speed. The 
performance coefficient is different for each turbine 
and is relative to the tip speed ratio λ and pitch angle β. 
In this paper, the Cp is, as follows: 
 

2 0.171
( 0.022 5.6)e

2
pC                                 (6) 
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The CP - λ curves are shown in Fig. 6 for different 
values of β. 

 
 

Fig. 6: CP- λ curves for different pitch angles 
 

3.3. Shaft Model/ Drive Train System 
 

The shaft model of the wind turbine is described by 
the two-mass model as shown in Fig. 7 and defined 
by the following equation: 
 

t g
t


  


                                                                  (7) 
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Where, 
 
Tt : the mechanical torque referred to the generator 
side, 

Te:  the electromagnetic torque, 

Ht : the equivalent turbine-blade inertia, 

Hg: the generator inertia, 

ωt: the turbine’s rotational speed, 

ωg: the generator’s rotational speed, 

K: the shaft stiffness 

D: the damping constant 

Θs: the angular displacement between the ends of the 
shaft 

 

Fig. 7: Two mass model of wind turbine train 
 

3.4. Induction Generator Model 

 
The PSCAD/EMTDC software library provides a 
standard model for the induction generator, 
represented by a standard seventh-order model in a d-
q reference frame. This model is used in this paper. 
 

4. Stability Analysis 
 
The concept of the induction generator stability can be 
further explained by using the electrical torque versus 
rotor speed curve of an induction generator. In order to 
obtain a mathematical relationship between electrical 
torque and rotor speed, the steady-state equivalent 
circuit of an induction generator shown in Fig. 8 is used 
[47-49]. 
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Fig. 8: Steady-state equivalent circuit of induction 
generator (a), complete model and (b) Thevenin model. 
 
The electrical torque, Te can be calculated, as 
follows: 

2
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When the induction machine operates as a generator, 
the mechanical torque is negative. Therefore, the 
electrical-mechanical equilibrium equation of an 
induction generator can be written, as follows: 
 

( )

2

e mr
T Td

dt H


                                                          (11) 

 
where, H is the inertia constant. From Eq. (11), two 
equilibrium points, where the electrical torque is equal 
to the mechanical torque, can be found. Using FCL has 
advantages as follows: 
 

 The fault current is limited and voltage sag is 
prevented at the terminal voltage of induction 
generator (Vt). According to Eq. (10), the 
electrical torque is proportional to the square 
of the terminal voltage. Therefore, FCL 
prevents from the decreasing electrical torque 
and accelerating the induction generator. 

 
 FCL prevents from increasing speed 

independent of fault clearing time. According 
Eq. (10), the electrical torque is inversely 
proportional to slip and rotor speed. Therefore, 
FCL prevents from decreasing electrical torque 
and accelerating induction generator. 

 

5. Simulation Results 
 
A single line diagram of the simulated power system 
with transformer-type SFCL is shown in Fig. 9. The 
parameters of this system are listed in table I in 
appendix A. A 3-phase short circuit fault is simulated 
on line 2which starts at t=10s. After 200ms, the circuit 
breaker isolated the faulted line. The simulations have 
been carried out by PSCAD/EMTDC for two cases, as 
follows: 
 
 Case A: Without using any FCL in the system 

 Case B: By using the transformer-type SFCL 

 

Fig. 9: Simulated power system with transformer-type 

SFCL 

Fig. 10 shows the rms value of the PCC voltage in the 
both cases (A) and (B). It can be observed that the PCC 
voltage decreases to zero in case A, approximately. The 
transformer-type SFCL not only decreases the voltage 
sag to 0.95 pu, but also prevents from instantaneous 
voltage sag in fault instant. Fig. 11 shows the total 
active power generated by the induction generator and 
the grid. During the fault (10s<t<10.2s), the active 
power generated by the induction generator is 
increased by using the transformer-type SFCL. Fig. 12 
shows the total reactive power exchanged between the 
induction generator and the grid. After the fault has 
cleared (at t = 10.2 s), the absorbing reactive power 
from the grid is significantly reduced. However, the 
reactive power absorbed by the induction generator is 
reduced, in case B. Figures 13 and 14 show the rotor 
speed of the induction generator, and the electrical 
torque, respectively. As shown in Fig. 13, the generator 
rotor-speed swing is reduced in case B. These results 
show that transformer-type SFCL can provide an 
effective damping to the post-fault oscillations of the 
induction generator. As shown in Fig. 14, the variation 
of the electrical torque is reduced in case B. Because 
the transformer-type SFCL in prevents an 
instantaneous voltage sag during fault. The 
transformer-type SFCL is very effective in suppressing 
the variations of the electrical torque during fault, but 
it results in swings after fault clearing. 
 
Fig. 15 shows the rotor current of induction generator. 
In both figures, the amplitude of rotor currents is 
reduced in case B. However, the rotor current 
transients are significantly reduced in fault instant and 
after fault clearing. 
 

 
 

Fig. 10: Effect of transformer-type SFCL on PCC voltage 
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Fig. 11: Active power of induction generator during fault 
 

 
 

Fig. 12: Reactive power of induction generator during 
fault 

 

 
 

Fig. 13: Rotor speed of induction generator during fault 

 
 

Fig. 14: Electrical torque of induction generator during 
fault 

 

 
 

Fig. 15: Electrical torque of induction generator during 
fault 

 

6. CONCLUSION 

In this paper, the effect of the transformer-type SFCL 
in transient performance of fixed speed turbines has 
been studied based simulation by PSCAD/EMTDC. 
The simulation results show that the transformer -
type SFCL not only limits the fault current but also 
suppresses the voltage drop and improves generator 
stability. Also, the oscillation of active and reactive 
powers, electrical torque and stator and rotor 
currents are reduced effectively during fault.  
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Appendix 
 

Table 1: Parameters of test system 
 

Parameters Value 

grid 

Supply 20 kV 

Frequency 50Hz 

Step down 
transformer 

.69kV/20 
kV 

line 

R 0.1(Ω/km) 

X 0.2(Ω/km) 

Length of 
Line1 

20 km 

Length of 
Line2 

20 km 

Induction Generator 

Power 1MW 

Voltage 690 V 

Frequency 50 Hz 

Number of  
poles 

4 

Stator  
resistance 

0. 00577 Ω 

Stator  
reactance 

0.0782   Ω 

Rotor 
resistance 

0. 0161  Ω 

Rotor 
reactance 

0.1021   Ω 

Magnetizing 
reactance 

2.434     Ω 

FCL SC resistance  10 Ω 
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