
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 11 | Nov -2017 www.irjet.net p-ISSN: 2395-0072

Prevention Against CSRF Attack Using Client Server Mutual

Authentication Technique

Pooja khete1, Urjita thakar2

1Assistant professor, Dept. of Computer Science Engineering, Gov. Engineering college jhabua, M.P, India
2Professor, Dept. of Computer Science Engineering, SGSITS Indore, M.P, India

---***---

Abstract - The web has become an indispensable part of our
lives. Unfortunately, as our dependency on the web increases,
so does the interest of attackers in exploiting web applications
and web-based information systems. Researchers focus on
web application security in which most important are
mitigation of Cross Site Scripting (XSS) and SQL injection
attacks. In contrast, Cross Site Request Forgery (XSRF) attacks
have not received much attention. In an XSRF attack, the trust
of a web application in its legitimate users is exploited by the
attacker to make a forged HTTP requests on behalf of a
guenon user. Internet applications generally influence such
requests while not confirmative that perform action area
unit so intentional, as a result of XSRF may be comparatively
new security downwards. Most of the part are unknown by
web application developers. As a result there exist the several
internet applications that area unit susceptible to XSRF. Sadly,
existing mitigation approaches area unit long and fallible, as
they need manual effort to integrate defense techniques into
existing systems. In this paper, client server mutual
authentication technique has been proposed .This technique
separates the identification and authentication steps.
Authentication token is provided to each user which helps to
prevent this attack. Tokens are provided to the user in the
from of image which are encode and decode using
base64encoding and decoding technique. This encoding and
decoding technique is used for improving security. We provide
experimental results that demonstrate that client server
mutual authentication technique provides better solution
against the CSRF attack, which is done with the help of
IFRAME. Attack made through POST or GET request, using
JavaScript and teg of HTML are thwarted.

Key Words: CSRF, XSRF, Client Server Mutual
Authentication, Token, Identification etc.

1. INTRODUCTION

Use of internet is increasing very rapidly with the fast
changing technology. It is now being used for every possible
functionality that can be performed online. Web applications
are playing important role to provide these functionalities.
Web applications have now become part of life of human
beings. These applications help to reduce their efforts for
activities such as reservations, online banking etc. Some are
aimed at entertainment or connecting users socially such as
Facebook, Myspace etc. With all these facilities and
convenience, they have also brought some problems related
to security. Attacks on web application may result in huge

loss in term of loss in data reputation etc. Due to their
popularity Web applications have become a major target for
hackers. Web applications run in the browser. Web
applications are accessed through a browser. Any security
escape clause in programs may prompt exploiting
vulnerability in a web application. Well known client side
attack is CSRF (Cross Site Request Forgery) attack [2]. A
report submitted by Open Web Application Security Project
(OWASP) in the year 2013, on vulnerabilities in critical web
applications ranks Cross Site Request Forgery (CSRF) attack
at position seventh[10]. CSRF attack is known by various
different names, including Session Riding, XSRF, confused
deputy Sea Surf, Cross-Site Request Forgery, and Hostile
Linking. Social engineering (such as sending a link via email
or chat) helps an attacker may trick the users of a web
application by executing actions of the attackers choice [7].
Attacker inherits the identity and privileges of the victim to
perform an undesired function on the victim’s behalf. Many
sites, browser request automatically include any credentials
associated with the sites, such as the users session cookie, IP
address, Port, Windows domain credentials, etc. Therefore, if
the user is authenticated currently to the legitimate site, the
site does not have any method to find difference between a
forged request and a legitimate request sent by the victim.
CSRF attacks target the functionality that causes a state
change on the server, such as changing the victims email
address, password, purchasing choice etc [10] [11].

 HTTP is the most common stateless protocol
used for accessing website. It is not able to determine
whether all the requests belong to a single user or from
different users. Thus there is no straightforward mechanism
to identify requests of a user authenticated on a web server.
One way to overcome this problem is to preserve user-
specific state in client-side cookies [12]. CSRF is common
attack for which few mitigation solutions have been
proposed. The solution includes use of client site proxy
solution, client Side Browser plug-in, Origin Header, server
site proxy, NOScript and CsFire etc[5][6][7][3][8][1]. These
solutions do not provide the complete protection against
CSRF or require significant modification individual web
application be protected.

 In this paper, an approach is presented that
provides protection from CSRF attacks. A client server
mutual authentication technique has been used. A shared
secret between client and server is used to prevent this
attack. The shared secret cannot be stolen by an attacker,
and the browser cannot be lured into leaking the secret.

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 612

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 11 | Nov -2017 www.irjet.net p-ISSN: 2395-0072

 Rest of the paper is organized as follows: In the
next section the background details are given. In III section
related work has been discuss. In section VI proposed
method is presented. Results and Discussion on them are
given in section V. The paper is concluded in section VI along
with some discussion on future work.

2. BACKGROUND

Cross-site request forgery attack is also called one-click or
session riding and abbreviated as CSRF or XSRF. It is a type
of attack in which exploitation of a website is done by issuing
the un authorized command from a user to the trusted
website. In this chapter different types of CSRF attacks are
discussed. Also the tools and technologies using of the
project are presented. Different types of CSRF attack are
discuss below.

Types of CSRF attacks CSRF attacks can be classified into two
major categories reflected and stored/local [9].

• Reflected CSRF: In reflected CSRF helplessness, the
assailant utilizes a frame work outside the application
to open the casualty to the adventure connection or
substance. This should be possible utilizing a blog, an
email message, a text, a message board posting, or even
an advertisement posted in an open spot with a URL
that a casualty sorts in. Reflected CSRF assaults will
frequently come up short, as clients may not be right
now signed into the objective framework when the
exploits are attempted. The trail from a reflected CSRF
assault might be under the control of the attacker,
however, and could be erased once the adventure was
finished.

 • Stored CSRF: A put away CSRF defenselessness is one
where the aggressor can utilize the application itself to
give the casualty the adventure join or other substance
which coordinates the victims browser over into the
application, and causes assailant controlled activities to
be executed as the casualty. If any web application is
venerable to CSRF attack then the malicious code is
stored by the attacker using IMG, IFRAME tag or
JavaScript. When the CSRF attack is stored in the site
then the possibility of this attack is high because the
victim is more excited to view the page containing the
attack then some random page on the Internet. These
vulnerabilities are more likely to succeed, since the user
who receives the exploit content is almost certainly
authenticated to perform actions .Stored CSRF
vulnerabilities also have a more obvious trail, which
may lead back to the attacker. B. CSRF Attack Vector A
web application is vulnerable against CSRF attacks since
it believes the session, between the server side part of
the web application and the customer, No approval in
individual solicitations are made by the customer [13].
This empowers an aggressor to trap the accidental
client in sending a vindictive request to the server,

which is trusted by the server, since the customer is
validated and trusted inside the session. Vindictive URL
utilized as a part of a CSRF assault is frequently
installed inside a HTML tag on an pure looking
page so that a web program will naturally play out a
GET ask for to the URL without client assent. Whenever
the CSRF attack is performed by the HTTP POST
Request rather than HTTP GET request the attack is
slightly more complex. From will be created by attacker
using HTML element or JavaScript for performing this
attack. Because of this attacker have some degree of
control over the malicious site in which attacker will
have to embed their own link in this site. In this attack
attacker gain control over the site either by being the
site owner or finding some XSS vulnerability in the site.
A user is venerable as long as he is logged in to a web
application. A single mouse click or just browsing a
page under the attackers control can easily lead to
unintended requests. Most web applications are not
aware of this fact, leaving their users in danger.

Fig -1: CSRF Attack

Some work related to mitigating of CSRF is as discussed in
next section.

3. RELATED WORK

In last few years, researchers have made contribution
towards prevention of CSRF attack. CSRF vulnerabilities
have been known and in some cases exploited [12].

 Ramarao R, et al [5] presented a client-side
proxy solution that recognizes and prevents CSRF attack
utilizing IMG component or other HTML components which
are used to get the realistic pictures for the website page.
This intermediary can assess and alter client’s demands and
the applications replies (output) naturally and transparently
expand applications with the secret token approval method.

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 613

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 11 | Nov -2017 www.irjet.net p-ISSN: 2395-0072

 William Zeller, et al [6] actualized a client-side
browser plug-in that can shield users from specific sorts of
CSRF assaults. They executed their tool as an extension to
the firefox web browser. Clients needed to download and
introduce this expansion for it to be effective against CSRF
assaults. Their augmentation works by capturing each HTTP
request and deciding whether it ought to be permitted. This
decision is made using the following rules to start with any
solicitation that is not a POST solicitation is permitted. Next,
if the requested for site and target site fall under the same-
source strategy, the solicitation is permitted. Next, the site
requesting the permission to make a solicitation utilizing
adobes cross-domain policy for the target site.

 Nanad jovanovic, et al [7] proposed a mitigation
mechanism that is based on server side proxy that detect and
prevent CSRF attack and it is transparent to both user and
web application. It provides complete automatic protection
From XSRF attack. It is the mitigation mechanisms that
provide just partial security by replacing GET Request by
POST Request or depending on the information in the
Referrer header of HTTP solicitations.

 Johns, et al [3] proposed RequestRodeo for prevent
CSRF attack. Apart from this RequestRedo with the exception
of client side SSL provide protection against the misuse of
implicit authentication mechanism. It enable user to protect
themselves against CSRF attack. It is same as the local proxy
on user’s computer.

 Tatiana Alexenko, et al [8] developed mozilla
firefox web browser extension to protect users browsing
history. It generates the HTTP request to random URLs from
the users browsing history. Before loading page it previews
the HTML code and detects the potential CSRF attack. The
detector would first find all <form> tags and check the action
attribute of the form tags for deep linking. When CSRF
detector found such forms it prompts the user and asks the
user if he want to add the pair of URL of website and URL of
form action to white list.

 A solution to prevent CSRF attacks, a web
application has to make sure that the incoming form data has
originated from a valid HTML form. Valid” in this context
means the submitted HTML form was generated by the
actual web application in the first place. It also has to be
ensured that the HTML form was generated especially for
the client. To enforce these requirements, hidden form
elements with random values have been employed. These
values are used as one time tokens [2].

 CsFire is an integrated extension into Mozilla
browser to mitigate CSRF attacks. CsFire is the only system
that provides formal validation through bounded model
checking to defend against CSRF in the formal model of the
web developed by Akhawe et.al [1]. CsFire strips cookies and
HTTP authorization headers from a cross-origin request. The
advantage of stripping cookies and HTTP authorization

headers is that there are no side-effects for cross-origin
requests.

 No Script ABE [2], or Application Boundary Enforcer,
restricts an application within its origin, which effectively
strips credentials from cross-origin requests, unless
specified otherwise. The default ABE policy only prevents
CSRF attacks from the internet to an intranet page.

 Request Policy [4] protects against CSRF by blocking
all cross-origin requests. In contrast to stripping credentials,
blocking a request can have a very noticeable effect on the
user experience. When detecting a cross-origin redirect,
Request Policy injects an intermediate page where the user
can explicitly allow the redirect. It includes a predefined
white list of hosts that are allowed to send cross-origin
requests to each other. Users can add exceptions to the
policy using a white list.

 The approach to mitigate CSRF attack is
presented in the next section.

4. PROPOSED APPROACH

In this section, proposed client server mutual authentication
technique is discussed to mitigate the CSRF attack. In this
method Authentication and identification have been
separated. Thus complete authentication consists of two
steps:-

 1) Identification through username and password.
 2) Authentication through token.

Fig -2: CSRF Prevention

The identification and authentication in web session relies
on visual authentication tokens which can be easily
remembered and recognize by the user. After login, the user

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 614

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 11 | Nov -2017 www.irjet.net p-ISSN: 2395-0072

is equipped with the shared secret that is not stored in his
browser. The former universal token then serves as the
identification that is complemented by the shared secret as
the authentication for security critical operation. The shared
secret cannot be stolen by an attacker and the browser
cannot be lured into leaking the secret.

When the user accesses a web application, for protection
from CSRF attack, server follows the mechanisms as given
below.

 When new user arrives, he is required to register to
the website and then provide with the registration
key of his choice.

 Next, the user logs into the web server.
 Next, the server provides an encoded token to the

user which appears on the screen in decoded form
when user enters the registration key provided to
him during registration process. The encoding and
decoding is done by the base64 encoding and
decoding technique.

 On receiving the token, the user continues to fill all
the required information corresponding to
particular operation and submits.

 Fig -3: Flow Chart

 During the interaction of client with server, the
attacker can hijack the HTTP session and can insert
or modify information related to user.

 Therefore, to ensure the authentic information
exchange between client and server, the server
asks the client to select the token that given to him
at the time of login.

 The server facilitates the user by displaying
multiple image token from which the user needs to
select the token corresponding to him.

 On receiving the valid token, the server completes
the required operation otherwise reject the
request.

In the next section, the testing of proposed method is
presented.

5. RESULTS AND DISCUSSION

In this section, the testing and result of the protection
mechanism from CSRF attack discussed. Based on the
method used by the client for communication with the
server. The attacker uses either GET request/POST request
for modifying the information. Next, the CSRF attack
performed on the server. When the client uses POST request
to communicate with the server is discussed.

Test Case 1: CSRF Attack Using POST Request.

 The target website for this example will be
localhost/demo/index.php.

 User has account on his website. The user must be
authenticated with the target website.

 Once the victim is authenticated, the attacker can
include a link or script in a third-party website that
the victim visits.

 The attacker uses an HTTP POST request to realize
a CSRF attack. The code when attacker use POST
request is shown.

 It is very difficult for the target website to
distinguish between legitimate and rogue HTTP
POST requests, since the requests are sent from a
trusted browser.

 Thus, when the victim visits that website or link, the
rogue script will be executed without the victim
being aware of it.

 That means that if no prevention measures are in
place, a CSRF attack can be performed transparently
without the victim or target website realizing it.

 By analyzing packets the attacker uses CSRF to
change the information on the victims profile.

This attack is prevented by client server mutual
authentication technique as given in proposed approach.

Test Case 2: CSRF Attack Using GETS Request

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 615

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 11 | Nov -2017 www.irjet.net p-ISSN: 2395-0072

 In the CSRF attack below, the data to be changed is
contained in a parameter called Email Address.

 If the user can be tricked into visiting a website
under the attackers control, the following code can
be used to change the email address stored as a
login credential on that site, the page can be
presented as anything: it could be blank, or it could
be a replica of the website that’s under attack.

 All it needs is the code above, which displays an
image; this image does not need to exist, and it only
covers a 1x1 pixel area, so it does not arouse
suspicion.

 As soon as the user’s browser loads the page, the
code will automatically submit the request to
change the users email address.

 As long as the victim is logged into the website at
the time, it will be processed exactly as if the victim
had clicked the link.

Here we use the client server mutual authentication
technique to prevent these types of attacks.

6. CONCLUSION

Cross Site Request Forgery is one of the common
vulnerabilities in the Internet. It remains challenging for the
researchers to provide a better solution for mitigating this
attack. There were many organizations which affected by
this cross site request forgery attack. Defense mechanisms
and existing solutions for cross site request forgery are
working in some extend only. The above work can be
extended to provide suitable solutions for the cross site
request forgery attack by means of applying techniques to
preventing the attack before the attackers attack. The CSRF
protection system achieved the following goals.

REFERENCES

[1] Philippe De Ryck, Lieven Desmet, Thomas Heyman,

Frank Piessens, and Wouter Joosen. Csfire: Transparent
client-side mitigation of malicious cross-domain
requests. In Lecture Notes in Computer Science, pages
1834. Springer Berlin / Heidelberg, 2010.

[2] Giorgio Maone. Noscript 2.0.9.9. http://noscript.net/,
2011.

[3] Martin Johns and Justus Winter. RequestRodeo: client
side protection against session riding. Proceedings of
the OWASP Europe 2006 Conference, refereed papers
track, Report CW448, pages 517, 2006.R. Nicole, “Title of
paper with only first word capitalized,” J. Name Stand.
Abbrev., in press.

[4] Ramarao R. Tool preventing image based CSRF attacks.

[5]] W. Zeller and E. W. Felten, Cross-Site Request
Forgeries: Exploitation and Prevention, Technical
Report, Princeton University, 2008.

[6]] Nenad Jovanovic, Engin Kirda, and Christopher
Kruegel. Preventing cross site request forgery attacks.In
IEEE International Conference on Security and Privacy
in Communication Networks (SecureComm), 2006.

[7] Tatiana Alexenko Mark Jenne suman Deb Roy and
Wenjun Zeng, Cross-Site Request Forgery: Attack and
Defense. In Proc. IEEE Communications Society (CCNC),
2010.

[8] Sapna Choudhary, Bhupendra Singh Thakur, DES
Encryption and Attack detection in Client-Server
Communication, International Journal of Advanced
Research in Computer Science and Software
Engineering. Volume 4, Issue 3, March 2014.

[9] OWASP. The ten most critical web application security
vulnerabilities.

[10] Sentamilselvan K, S Lakshmana Pandian,
Dr.K.Sathiyamurthy. ”Survey on Cross Site Request
Forgery.” IEEE International Conference on Research
and Development Prospects on Engineering and
Technology (IEEE ICRDPET-2013). Vol. 5. No. 5. IEEE,
2013.

[11] Kappel, Gerti, Birgit Prll, Siegfried Reich, and Werner
Retschitzegger. Web engineering. John Wiley Sons, 2006.

[12] Wedman, Shellie, Annette Tetmeyer, and Hossein
Saiedian. ”An analytical study of web application session
management mechanisms and HTTP session hijacking
attacks.” Information Security Journal: A Global
Perspective 22, no. 2 (2013), 55-67.

[13] Chen, Eric Y., Sergey Gorbaty, Astha Singhal, and Collin
Jackson. ”Self-exfiltration: The dangers of browser-
enforced information flow control.” InProceedings of the
Workshop of Web, vol. 2. 2012.

[14] W. Zeller and E. W. Felten. Cross-Site Request Forgeries:
Exploitation and prevention. Technical report, October
2008. http://www.freedom-to-tinker.com/sites/
default/files/csrf.pdf.

[15] J. Burns. Cross Site Reference Forgery: An introduction
to A common web application weakness.
http://www.isecpartners.com/documents/XSRFP
aper.pdf,2005

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 616

