
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 11 | Nov -2017 www.irjet.net p-ISSN: 2395-0072

Comparative Study of Object Detection Algorithms

Nikhil Yadav1 , Utkarsh Binay2

1Student,Computer Engineering Department, Rizvi College of Engineering, Maharashtra, India
2Student, Computer Science Department, Mukesh Patel School of Technology And Management,

Maharashtra, India
---***---
Abstract - This paper aims to find the best possible
combination of speed and accuracy while comparing
different object detection algorithms that use convolutional
neural networks to perform object detection. Models which
are usually computationally expensive, achieve the best
accuracy, but cannot be deployed in a simple setting with
limited resources, whereas, faster models fail to achieve
similar results compared to their bigger and more memory
intensive counterparts. We discuss two ends of a spectrum
here comparing three different models ,i.e Single Shot
Detector (SSD) [1], Faster R-CNN (Region - based
Convolutional

Neural Networks)[3], R-FCN(Region based-Fully
Convolutional Networks)[2], where on one end we get a
model which can be deployed on a mobile device because of
its speed and another model which is at the cutting edge of
performance when it comes to accuracy. These models are
trained and their performance metrics tested on the COCO
(common objects in context) dataset.

Key Words: COCO dataset, Bounding boxes, Single Shot
Detector, Inception Resnet, Resnet-101, Mobile Net, VGG-
16(Visual Geometry Group),Faster R-CNN, R-FCN, Hyper
parameter tuning, mAP(mean average precision)

1.INTRODUCTION

State of the art computer vision systems have involved a
range of object detection models that use convolutional
neural networks in their working. The deployment of
these models like YOLO[9], SSD[1], R-FCN[2],R-CNN, etc
depends on the kind of usage we want. Google photos has
deployed models like SSD Mobile Net which is known for
its speed and isn’t memory intensive, here performance
isn’t the most important factor ,but memory efficiency is.
In case of self driving cars though, the requirement for an
extremely accurate model is a priority, as these real time
systems are performing tasks which can lead to a life and
death situation in their surrounding. We need to evaluate
these models using several evaluation metrics like mAP,
memory requirement ,testing time. We have only
considered models which are quite similar in their
architecture on a high level overview. The models that are
considered are Faster R-CNN[3], R-FCN[2], SSD[1] , these
models have used sliding window style predictions and
have only used a single CNN network. These models are
responsible for the object detection part, whereas the
feature extraction part is carried out by the different

image classification models , the state of the art ones
which have participated in the image net competitions. We
refer to the object detection models as meta architectures
and they are coupled with different feature extractors for
eg(VGG, Resnet, Mobile Net[10]), to evaluate the various
combinations we get through them. We would first
describe the different meta architectures and then the
different feature extractors, and then compare their
combinations by testing them on the objects present in the
COCO dataset. In this paper we have tried to perform this
experiment in controlled conditions with same hardware
conditions for comparison and run these tests multiple
times so that they prove to be statistically consistent. We
have used the deep learning library Tensorflow[5] for our
implementation. Previous experiments by others have
been performed on caffe, and tried on other standard
datasets like PASCAL VOC(Visual Object Classes). A few
have fine tuned the detectors for their specific objects and
noted the test times for different models. The main reason
for using tensor flow[5] was its portability and ease of use.

Fig-1: An example of an object detector in use

2. META ARCHITECTURE

Modern meta architectures all use CNN for object
detection , let us have a look at the history of a few meta
architectures that we are discussing, and have an in depth
look at their inner working.

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 586

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 11 | Nov -2017 www.irjet.net p-ISSN: 2395-0072

2.1 R-CNN

The R-CNN model was one of the first models to use
convolutional neural networks for object detection. The
goal of R-CNN is to take in an image, and correctly identify
where the main objects (via a bounding box) in the image.
But how do we find out where these bounding boxes are?
R-CNN does what we might intuitively do as well -propose
a bunch of boxes in the image and see if any of them
actually correspond to an object. R-CNN creates these
bounding boxes, or region proposals using a process called
Selective Search. Selective search, looks at the image
through windows of different sizes, and for each size tries
to group together adjacent pixels by texture, color, or
intensity to identify objects. Once the proposals are
created, R-CNN warps the region to a standard square size
and passes it through to a feature extractor or image
classifier , which is a CNN. On the final layer of the CNN, R-
CNN adds a Support Vector Machine (SVM) that simply
classifies whether this is an object, and if yes, which object
is it.

2.2 Fast R-CNN

R-CNN works really well, but is really quite slow for a few
simple reasons It requires a forward pass of the CNN for
every single region proposal for every single image. It has
to train three different models separately - the CNN to
generate image features, the classifier that predicts the
class, and the regression model to tighten the bounding
boxes. This makes the pipeline extremely hard to train.
Both these problems were solved in Fast R-CNN[4] by the
creator of R-CNN himself. For the forward pass of the CNN,
Girshick realized that for each image, a lot of proposed
regions for the image invariably overlapped causing us to
run the same CNN computation again and again . His
insight was simple — Why not run the CNN just once per
image and then find a way to share that computation
across the proposals? .This is exactly what Fast R-CNN
does using a technique known as RoI Pool (Region of
Interest Pooling). At its core, RoI Pool shares the forward
pass of a CNN for an image across its subregions. In the
image above, notice how the CNN features for each region
are obtained by selecting a corresponding region from the
CNN’s feature map. Then, the features in each region are
pooled (usually using max pooling). So all it takes us is one
pass of the original image .The second insight of Fast R-
CNN is to jointly train the CNN, classifier, and bounding
box regressor in a single model. Where earlier we had
different models to extract image features (CNN), classify
(SVM), and tighten bounding boxes (regressor),Fast R-
CNN[4] instead used a single network to compute all three.
Fast R-CNN replaced the SVM classifier with a softmax
layer on top of the CNN to output a classification. It also
added a linear regression layer parallel to the softmax
layer to output bounding box coordinates. In this way, all
the outputs needed came from one single network.

2.3 Faster R-CNN

There was still one bottleneck with Fast R-CNN which had
to be sorted, that was the region proposer. The very first
step to detecting the locations of objects is generating a
bunch of potential bounding boxes or regions of interest to
test. In Fast R-CNN, these proposals were created using
Selective Search, a fairly slow process that was found to be
the bottleneck of the overall process. Faster R-CNN[3]
found a way a to make the step of region proposal almost
cost free. The insight of Faster R-CNN was that region
proposals depended on features of the image that were
already calculated with the forward pass of the CNN (first
step of classification). So why not reuse those same CNN
results for region proposals instead of running a separate
selective search algorithm? Indeed, this is just what the
Faster R-CNN team achieved. In this model, a single CNN is
used to both carry out region proposals and classification.
This way,only one CNN needs to be trained and we get
region proposals almost for free. How the Regions are
Generated? Let’s take a moment to see how Faster R-CNN
generates these region proposals from CNN features.
Faster R-CNN adds a Fully Convolutional Network on top
of the features of the CNN creating what’s known as the
Region Proposal Network.

Fig-2 : The Region Proposal Network slides a
window over the features of the CNN. At each

window location, the network outputs a score and
a bounding box per anchor (hence 4k box coordinates

where k is the number of anchors)

2.4 R-FCN

With the increase in performance, Faster R-CNN was an
order of magnitude swifter than its earlier counterpart
fast R-CNN .But there was issue of applying the region-
specific component had to be applied several times in an
image, this issue was resolved in R-FCN (Region based
Fully Convolutional networks) where the computation
required per image was reduced drastically, where instead
of cropping features from the same layer where the crops
are predicted, the crops are taken from last layer of
features prior to predictions. The algorithm works faster
than Faster R-CNN while achieving comparable accuracy

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 587

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 11 | Nov -2017 www.irjet.net p-ISSN: 2395-0072

scores when run using Resnet101 as the feature extractor,
on the hindsight, it also respects translational invariance,
as it is a position sensitive cropping mechanism.

2.5 SSD(Single Shot Detector)

SSD works by converting discrete output spaces for
bounding boxes into sets of default boxes for different
aspect ratios and for every feature map location. During
predictions, the model generates the scores in each default
box for every object detected and scales the default box to
fit the object shape. SSD is simpler than other networks as
it performs all computations in a single network. SSD
combines the predictions from numerous feature maps
having different resolutions to handle objects of various
sizes. It doesn’t involve regional proposal generating or
feature resampling like previous networks did, which
makes it easy to train and integrate into systems where
detection is required.

3. EXPERIMENTAL SETUP

3.1 Feature Extractors

We will be discussing a few feature extractors to get the
gist of the entire architecture, where meta architectures
are combined with feature extractors like VGG, Resnet101
etc. The way it works is that we first apply convolutional
neural networks via feature extractors to extract all the
high level information from the images. The feature
extractors must be wisely selected as types of layers, no of
parameters directly affect the speed and memory
performance of the object detectors. We will compare four
different feature extractors to combine with our meta
architectures and test their performances. Out of the four
chosen feature extractors , apart from Mobile Net, every
other feature extractor has an open source Tensor flow
implementation, which one can use via GitHub. We
compare VGG-16, Resnet101, Inception Resnet(v2)[6]
,which combines the optimization quality of ResNet with
computational efficiency of inception modules and Mobile
Net which achieved accuracies similar to VGG-16 in Image
net competition with 1/30 of its computational cost and
model size. As the name suggests, Mobile Net because of
its low computational cost has been at the forefront of
various vision applications in mobile devices. Its building
blocks are depth wise separable convolutions which
factorize a standard convolution into a depth wise
convolution and a 1x1 convolution, effectively reducing
both computational cost and number of parameters. In R-
FCN and R-CNN , where we must choose the layer that
must be used for predicting region proposals, we have
used ‘Conv5’ layer in VGG-16, and ‘Conv_4_x’ layers in
ResNet-101, for other feature extractors we choose similar
layers. In SSD, following previous methodologies, we have
also selected the topmost convolutional feature map and a
higher resolution feature map at a lower level, then adding
a sequence of convolutional layers with spatial resolution

decaying by a factor of 2 with each additional layer used
for prediction. We have used batch normalization in all
layers of the single shot detector.

3.2 Number Of Proposals

The no of region proposals that can be sent across to the
box classifier at test time can be varied. The default
number is 300 but we have tried a range of numbers .It
was noted that there was a trade-off between computation
cost and recall, so there was a balance to be maintained.
We have tried no of boxes ranging from 10 to 300 in our
exploration.

3.3 Loss Function Configuration

In our experiments we use Argmax matching throughout
with thresholds set as suggested in the original paper for
each meta-architecture. Also, using the ratios described in
the original papers of each meta architecture , we have
fixed the ratios of positive anchors and negative anchors.

3.4 Training and Hyperparameter Tuning

For Faster R-CNN and R-FCN, we have used Stochastic
gradient descent with momentum with batch size, as the
image sizes used were different, so they were being
trained independently, for SSD we have used 32 as the
batch size as they were resized to a fixed shape. The
learning rates were tuned manually for each feature
extractor. The networks were trained on the COCO dataset
,where we held 7000 images for validation. The model was
evaluated in the official COCO API where the mAP is
measured.

3.5 Hardware

We ran the experiment on a Nvidia Titan X GPU card ,on a
32 GB RAM device with Intel Xeon E5-1650 v2 processor.
The images were resized and the dimensions were k x k,
where k is either 300 or 600 . The timings were averaged
for 450 images.

3.6 Model Details

Here, we mention the intricate details of the different
combination of meta architectures with the feature
extractors.

3.6.1 Faster R-CNN

Tensorflow’s “crop_and_resize” is used instead of standard
ROI pooling, also batch normalization is used in all
convolutional layers. Optimizer used is SGD with
momentum set to 0.9. The learning rate was set as per the
feature extractor.

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 588

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 11 | Nov -2017 www.irjet.net p-ISSN: 2395-0072

VGG-16: The initial learning rate is set to 5e-4,we extract
features from the conv5 layers, we resize feature maps to
14x14 and maxpool layers of 7x7 is used .

Resnet-101: The initial learning rate is set to 3e-4, we
extract features from the final layer of conv4 block, stride
size is of 16 pixels.

Inception Resnet: The stride size is 8 in atrous mode, and
16 otherwise. The features are extracted from the
Mixed_6a layers including the residual layers. Features
maps are 17x17 size and learning rate is 1e-3.

MobileNet: The initial learning rate is 3e-3 and stride size
is set to 16 pixels. We extract features from Conv2D_11
layers and features maps of size 14x14 are used.

3.6.2 R-FCN

The parameters set are identical to those of R-CNN with
use of crop_and_resize, SGD with momentum 0.9, use of
batch normalization,etc. R-FCN was trained using Resnet,
Inception Resnet and MobileNet[10] feature extractors.

Resnet 101: Features are extracted from block3 layer, the
stride size is set to 16. The learning rate is initially set to
3e-4 with a decaying factor reducing it 10 times after
every million steps, and the images are resized to 21x21.

Inception Resnet: The initial learning rate is set to 7e-4,
the strides are set to 16, the features are extracted from
Mixed_6a layer.

MobileNet: The initial learning rate is set to 2e-4, the
features are extracted from Conv2d_11, the stride is set to
16 pixels, and the batch size is set to 128. The activation
function of ReLU is used.

3.6.3 SSD

Batch normalization is used in all layers and the weights
are initialized with a standard deviation of 0.03. The
convolutional feature maps were added and all of them
used for prediction, with the convolutional layers being
added with a spatial resolution, decaying by a factor of 2.

VGG-16: L2 normalization was used in the conv4_3 layer,
it was used along with fc7 layers and appended with other
layers with depth 512, and 4 other layers with depth
256.We use an initial learning rate of 0.003 .

Resnet- 101: The feature map is used from the last layer
of Conv4 block, the strides used is 16. Additional layers are
appended , who have spatial resolutions of
512,256,256,256,256 respectively. An initial learning rate
of 3e-4 is used.

Inception Resnet: The initial learning rate is set to 0.005,
with a decaying factor of 0.8 after every 700k steps. The
activation function ReLU is used . Mixed_6a and
Conv2d_7b is used by appending with additional
convolutional layers of depth 512,256,128 respectively.

MobileNet: The initial learning rate is set to 0.004 and we
have used conv_11 and conv_13 layers with four
additional layers with decaying spatial resolution with
depths of 512,256,256 ,128.The activation function ReLU
is used .

4. RESULTS

In this section we compare the training and testing times,
with more focus on the testing times of the different model
combinations and what different we obtain with different
hyperparameter tuning. The GPU times that have been
clocked are mentioned. Since the feature extractors used
are pretrained on the Imagenet dataset, so one can
intuitively think that a good performance on Imagenet
dataset must correlate with a good mAP score on the
COCO dataset.

Table -1:The comparison of different feature extractor
model’s accuracy on imagenet and their max and min mAP

scores on COCO dataset

Model
Name

Max mAP
score(COCO
)

Min mAP
score(COCO
)

Imagenet
Accuracy

VGG-16 23 19.8 0.71

Resnet-101 29 22.9 0.764

Inception
Resnet

30 20 0.804

MobileNet 18.8 14 0.712

Let us get into more specifics of the process and discuss
the training and testing times of different combinations,
and later on their mAP scores as well. The fastest model
combination was SSD MobileNet trained on a low
resolution image of 300, The slowest combination was
Faster R-CNN Inception Resnet trained on a resolution of
600. The least accurate model was R-FCN MobileNet,
whereas the most accurate model was Faster R-CNN
Inception Resnet.

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 589

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 11 | Nov -2017 www.irjet.net p-ISSN: 2395-0072

Table -2: Some interesting frontiers of the models on the
test sets , in terms on their mAP score on the COCO

dataset.

Model Mini validation
mAP

Test dev mAP

SSD MobileNet(faste
st)

19.3 19

(100 proposals)
Faster
R-CNN Resnet-
101 (good balance)

31 30.9

(300 proposals)
Faster R-CNN
Resnet-101(good
balance)
Model

33.2 33

(Most Accurate)
Faster R-CNN
Inception
Resnet

34.7 34.2

(least Accurate)
R-FCN
MobileNet

13.8 13.4

4.1 Analysis

It is noted that usually SSD and R-FCN models are faster
than their counterparts, also Faster R-CNN leads to much
slower times, taking more than 100ms per image and
giving the most accurate models of them all. Although, R-
FCN being the most accurate, they can be tuned to be
faster by changing the no of regions proposed. It is also
found that the intuition of feature extractors accuracy
correlating with the mAP scores on the COCO dataset
seems to be true only for Faster R-CNN and R-FCN as SSD
models as less reliant on the classification accuracy of
their feature extractors. The number of region proposals
for Faster R-CNN and R-FCN can be reduced without
affecting the mAP score by much, in turn saving lots of
computation. We found that , in Faster R-CNN Inception
Resnet, the mAP score with 300 proposals was 34.2, and it
gave a mAP score of 28.7 with just 10 proposals, although
the sweet spot is when we used 50 proposals as we are
able to achieve more than 93% accuracy of those trained
with 300 proposals by saving 3 times the running time. As
far as memory utilization is considered, Faster R-CNN
inception Resnet consumes the most memory whereas
SSD MobileNet consumes the least, unsurprisingly, it is
correlating with the speed of these models. The models
performed much better on bigger images with more

resolutions. In fact, SSD performed better than Faster R-
CNN and R-FCN on bigger images with light feature
extractors.

Table -3:Testing time on GPU with mAP scores of all the
combinations , the R-FCN and Faster R-CNN rows use 300

proposals in the above table.

Model Combination mAP
score

GPU
time

SSD MobileNet 19 40

SSD VGG-16 20.5 130

SSD Resnet-101 26.2 175

SSD Inception Resnet 20.3 80

Faster R-CNN MobileNet

19 118

Faster R-CNN VGG-16 24.9 250

Faster R-CNN Resnet-101

33 396

Faster R-CNN Inception Resnet

34.2 860

R-FCN MobileNet 13.4 75

R-FCN Resnet-101 30.5 386

R-FCN Inception Resnet

30.7 388

5. CONCLUSION

We have put forward a comparative study of state of the
art object detectors which use convolutional neural
networks. We have addressed their issues and
performance on a common hardware and also tested
different combinations of them, all on the COCO dataset.
We discovered that SSD performs much better with light
weight feature extractors on bigger images, competing
with the most accurate of models. We also found that
fewer proposals increase speed without compromising
much on the mAP scores.We wish to try different
combinations and find better results and sweet spots
which can be applied to specific use cases.

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 590

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 11 | Nov -2017 www.irjet.net p-ISSN: 2395-0072

REFERENCES

[1]Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu,
C.Y. and Berg, A.C., 2016,October. Ssd: Single shot multibox
detector. In European conference on computer vision (pp.
21-37). Springer, Cham.

[2]Dai, J., Li, Y., He, K. and Sun, J., 2016. R-fcn:Object
detection via region-based fully convolutional networks.
In Advances in neural information processing systems (pp.
379-387).

[3]Ren, S., He, K., Girshick, R. and Sun, J., 2015. Faster R-
CNN: Towards real-time object detection with region
proposal networks. In Advances in neural information
processing systems (pp. 91-99)

[4]Girshick, R., 2015. Fast r-cnn. In Proceedings of the
IEEE international conference on computer vision (pp.
1440-1448).

[5]Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,
Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M. and
Ghemawat, S., 2016. Tensorflow: Large-scale machine
learning on heterogeneous distributed systems. arXiv
preprint arXiv:1603.04467.

[6]N.Silberman and S.Guadarrama .Tf-slim: A high level
library to define complex models in tensorflow.
https://research.googleblog.com/2016/08/tf- slim-high-
level-library-to-define.html,2016. [Online;accessed-
November-2016]

[7]T. Y. Lin and P. Dollar. Ms coco api.
https://github.com/pdollar/coco, 2016 .

[8]Ren, S., He, K., Girshick, R., Zhang, X. and Sun, J., 2017.
Object detection networks on convolutional feature maps.
IEEE transactions on pattern analysis and machine
intelligence,39(7), pp.1476-1481.

[9]J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You
only look once: Unified, real-time object detection.arXiv
preprint arXiv:1506.02640, 2015.

[10]A. Howard, M. Zhu, B. Chen, D. Kalenichenko, W.
Wang,T. Weyand, M. Andreetto, and H. Adam. Mobilenets:
Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861,2017

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 591

https://research.googleblog.com/2016/08/tf-

