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Abstract - This paper aims to find the best possible 
combination of speed and accuracy while comparing 
different object detection algorithms that use convolutional 
neural networks to perform object detection. Models which 
are usually computationally expensive, achieve the best 
accuracy, but cannot be deployed in a simple setting with 
limited resources, whereas, faster models fail to achieve 
similar results compared to their bigger and more memory 
intensive counterparts. We discuss two ends of a spectrum 
here comparing three different models ,i.e Single Shot 
Detector (SSD) [1], Faster R-CNN (Region - based 
Convolutional 
 
Neural Networks)[3], R-FCN(Region based-Fully 
Convolutional Networks)[2], where on one end we get a 
model which can be deployed on a mobile device because of 
its speed and another model which is at the cutting edge of 
performance when it comes to accuracy. These models are 
trained and their performance  metrics  tested on the  COCO 
( common objects in context) dataset. 
 
Key Words:  COCO dataset, Bounding boxes,  Single Shot 
Detector, Inception Resnet, Resnet-101, Mobile Net, VGG-
16(Visual Geometry Group),Faster R-CNN, R-FCN, Hyper 
parameter tuning, mAP( mean average precision) 
 

1.INTRODUCTION  
 

State of the art computer vision systems have involved a 
range of object detection models that use convolutional 
neural networks in their working. The deployment of 
these models like YOLO[9], SSD[1], R-FCN[2],R-CNN, etc 
depends on the kind of usage we want. Google photos has 
deployed models like SSD Mobile Net which is known for 
its speed and isn’t memory intensive, here performance 
isn’t the most important factor ,but memory efficiency is. 
In case of self driving cars though, the requirement for an 
extremely accurate model is a priority, as these real time 
systems are performing tasks which can lead to a life and 
death situation in their surrounding. We need to evaluate 
these models using several evaluation metrics like mAP, 
memory requirement ,testing time. We have only 
considered models which are quite similar in their 
architecture on a high level overview. The models that are 
considered are Faster R-CNN[3], R-FCN[2], SSD[1] , these 
models have used sliding window style predictions and 
have only used a single CNN network. These models are 
responsible for the object detection part, whereas the 
feature extraction part is carried out by the different 

image classification models , the state of the art ones 
which have participated in the image net competitions. We 
refer to the object detection models as meta architectures 
and they are coupled with different feature extractors for 
eg( VGG, Resnet, Mobile Net[10]), to evaluate the various 
combinations we get through them. We would first 
describe the different meta architectures and then the 
different feature extractors, and then compare their 
combinations by testing them on the objects present in the 
COCO dataset. In this paper we have tried to perform this 
experiment in controlled conditions with same hardware 
conditions for comparison and run these tests multiple 
times so that they prove to be statistically consistent. We 
have used the deep learning library Tensorflow[5] for our 
implementation. Previous experiments by others have 
been performed on caffe, and tried on other standard 
datasets like PASCAL VOC(Visual Object Classes). A few 
have fine tuned the detectors for their specific objects and 
noted the test times for different models. The main reason 
for using tensor flow[5] was its portability and ease of use. 

 

Fig-1: An example of an object detector in use 

 
2. META ARCHITECTURE 
 
Modern meta architectures all use CNN for object 
detection , let us have a look at the history of a few meta 
architectures that we are discussing, and have an in depth 
look at their inner working. 
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2.1 R-CNN 
 
The R-CNN model was one of the first models to use 
convolutional neural networks for object detection. The 
goal of R-CNN is to take in an image, and correctly identify 
where the main objects (via a bounding box) in the image. 
But how do we find out where these bounding boxes are? 
R-CNN does what we might intuitively do as well -propose 
a bunch of boxes in the image and see if any of them 
actually correspond to an object. R-CNN creates these 
bounding boxes, or region proposals using a process called 
Selective Search. Selective search, looks at the image 
through windows of different sizes, and for each size tries 
to group together adjacent pixels by texture, color, or 
intensity to identify objects. Once the proposals are 
created, R-CNN warps the region to a standard square size 
and passes it through to a feature extractor or image 
classifier , which is a CNN. On the final layer of the CNN, R- 
CNN adds a Support Vector Machine (SVM) that simply 
classifies whether this is an object, and if yes, which object 
is it. 
 

2.2 Fast R-CNN 
 
R-CNN works really well, but is really quite slow for a few 
simple reasons It requires a forward pass of the CNN for 
every single region proposal for every single image. It has 
to train three different models separately - the CNN to 
generate image features, the classifier that predicts the 
class, and the regression model to tighten the bounding 
boxes. This makes the pipeline extremely hard to train. 
Both these problems were solved in Fast R-CNN[4] by the 
creator of R-CNN himself. For the forward pass of the CNN, 
Girshick realized that for each image, a lot of proposed 
regions for the image invariably overlapped causing us to 
run the same CNN computation again and again . His 
insight was simple — Why not run the CNN just once per 
image and then find a way to share that computation 
across the proposals? .This is exactly what Fast R-CNN 
does using a technique known as RoI Pool (Region of 
Interest Pooling). At its core, RoI Pool shares the forward 
pass of a CNN for an image across its subregions. In the 
image above, notice how the CNN features for each region 
are obtained by selecting a corresponding region from the 
CNN’s feature map. Then, the features in each region are 
pooled (usually using max pooling). So all it takes us is one 
pass of the original image .The second insight of Fast R-
CNN is to jointly train the CNN, classifier, and bounding 
box regressor in a single model. Where earlier we had 
different models to extract image features (CNN), classify 
(SVM), and tighten bounding boxes (regressor),Fast R-
CNN[4] instead used a single network to compute all three. 
Fast R-CNN replaced the SVM classifier with a softmax 
layer on top of the CNN to output a classification. It also 
added a linear regression layer parallel to the softmax 
layer to output bounding box coordinates. In this way, all 
the outputs needed came from one single network. 
 

2.3 Faster R-CNN 
 
There was still one bottleneck with Fast R-CNN which had 
to be sorted, that was the region proposer. The very first 
step to detecting the locations of objects is generating a 
bunch of potential bounding boxes or regions of interest to 
test. In Fast R-CNN, these proposals were created using 
Selective Search, a fairly slow process that was found to be 
the bottleneck of the overall process. Faster R-CNN[3] 
found a way a to make the step of region proposal almost 
cost free. The insight of Faster R-CNN was that region 
proposals depended on features of the image that were 
already calculated with the forward pass of the CNN (first 
step of classification). So why not reuse those same CNN 
results for region proposals instead of running a separate 
selective search algorithm? Indeed, this is just what the 
Faster R-CNN team achieved. In this model, a single CNN is 
used to both carry out region proposals and classification. 
This way,only one CNN needs to be trained and we get 
region proposals almost for free. How the Regions are 
Generated? Let’s take a moment to see how Faster R-CNN 
generates these region proposals from CNN features. 
Faster R-CNN adds a Fully Convolutional Network on top 
of the features of the CNN creating what’s known as the 
Region Proposal Network. 
 

 
 

Fig-2 : The Region Proposal Network slides a 
window over the features of the CNN. At each 

window location, the network outputs a score and 
a bounding box per anchor (hence 4k box coordinates 

where k is the number of anchors) 
 

2.4 R-FCN 
 
With the increase in performance, Faster R-CNN was an 
order of magnitude swifter than its earlier counterpart 
fast R-CNN .But there was issue of applying the region-
specific component had to be applied several times in an 
image, this issue was resolved in R-FCN (Region based 
Fully Convolutional networks) where the computation 
required per image was reduced drastically, where instead 
of cropping features from the same layer where the crops 
are predicted, the crops are taken from last layer of 
features prior to predictions. The algorithm works faster 
than Faster R-CNN while achieving comparable accuracy 
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scores when run using Resnet101 as the feature extractor, 
on the hindsight, it also respects translational invariance, 
as it is a position sensitive cropping mechanism. 
 

2.5 SSD(Single Shot Detector) 
 
SSD works by converting discrete output spaces for 
bounding boxes into sets of default boxes for different 
aspect ratios and for every feature map location. During 
predictions, the model generates the scores in each default 
box for every object detected and scales the default box to 
fit the object shape. SSD is simpler than other networks as 
it performs all computations in a single network. SSD 
combines the predictions from numerous feature maps 
having different resolutions to handle objects of various 
sizes. It doesn’t involve regional proposal generating or 
feature resampling like previous networks did, which 
makes it easy to train and integrate into systems where 
detection is required. 
 

3. EXPERIMENTAL SETUP 
 

3.1 Feature Extractors 
 
We will be discussing a few feature extractors to get the 
gist of the entire architecture, where meta architectures 
are combined with feature extractors like VGG, Resnet101 
etc. The way it works is that we first apply convolutional 
neural networks via feature extractors to extract all the 
high level information from the images. The feature 
extractors must be wisely selected as types of layers, no of 
parameters directly affect the speed and memory 
performance of the object detectors. We will compare four 
different feature extractors to combine with our meta 
architectures and test their performances. Out of the four 
chosen feature extractors , apart from Mobile Net, every 
other feature extractor has an open source Tensor flow 
implementation, which one can use via GitHub. We 
compare VGG-16, Resnet101, Inception Resnet(v2)[6] 
,which combines the optimization quality of ResNet with 
computational efficiency of inception modules and Mobile 
Net which achieved accuracies similar to VGG-16 in Image 
net competition with 1/30 of its computational cost and 
model size. As the name suggests, Mobile Net because of 
its low computational cost has been at the forefront of 
various vision applications in mobile devices. Its building 
blocks are depth wise separable convolutions which 
factorize a standard convolution into a depth wise 
convolution and a 1x1 convolution, effectively reducing 
both computational cost and number of parameters. In R-
FCN and R-CNN , where we must choose the layer that 
must be used for predicting region proposals, we have 
used ‘Conv5’ layer in VGG-16, and ‘Conv_4_x’ layers in 
ResNet-101, for other feature extractors we choose similar 
layers. In SSD, following previous methodologies, we have 
also selected the topmost convolutional feature map and a 
higher resolution feature map at a lower level, then adding 
a sequence of convolutional layers with spatial resolution 

decaying by a factor of 2 with each additional layer used 
for prediction. We have used batch normalization in all 
layers of the single shot detector. 
 

3.2 Number Of Proposals 
 
The no of region proposals that can be sent across to the 
box classifier at test time can be varied. The default 
number is 300 but we have tried a range of numbers .It 
was noted that there was a trade-off between computation 
cost and recall, so there was a balance to be maintained. 
We have tried no of boxes ranging from 10 to 300 in our 
exploration. 
 

3.3 Loss Function Configuration 
 
In our experiments we use Argmax matching throughout 
with thresholds set as suggested in the original paper for 
each meta-architecture. Also, using the ratios described in 
the original papers of each meta architecture , we have 
fixed the ratios of positive anchors and negative anchors. 
 

3.4 Training and Hyperparameter Tuning 
 
For Faster R-CNN and R-FCN, we have used Stochastic 
gradient descent with momentum with batch size, as the 
image sizes used were different, so they were being 
trained independently,  for SSD we have used 32 as the 
batch size as they were resized to a fixed shape. The 
learning rates were tuned manually for each feature 
extractor. The networks were trained on the COCO dataset 
,where we held 7000 images for validation. The model was 
evaluated in the official COCO API where the mAP is 
measured. 
 

3.5 Hardware 
 
We ran the experiment on a Nvidia Titan X GPU card ,on a 
32 GB RAM device with Intel Xeon E5-1650 v2 processor. 
The images were resized and the dimensions were k x k, 
where k is either 300 or 600 . The timings were averaged 
for 450 images. 
 

3.6 Model Details 
 
Here, we mention the intricate details of the different 
combination of meta architectures with the feature 
extractors.  
 

3.6.1 Faster R-CNN 
 
Tensorflow’s “crop_and_resize” is used instead of standard 
ROI pooling, also batch normalization is used in all 
convolutional layers. Optimizer used is SGD with 
momentum set to 0.9. The learning rate was set as per the 
feature extractor. 
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VGG-16: The initial learning rate is set to 5e-4,we extract 
features from the conv5 layers, we resize feature maps to 
14x14 and maxpool layers of 7x7 is used . 
 
Resnet-101: The initial learning rate is set to 3e-4, we 
extract features from the final layer of conv4 block, stride 
size is of 16 pixels. 
 
Inception Resnet: The stride size is 8 in atrous mode, and 
16 otherwise. The features are extracted from the 
Mixed_6a layers including the residual layers. Features 
maps are 17x17 size and learning rate is 1e-3. 
 
MobileNet: The initial learning rate is 3e-3 and stride size 
is set to 16 pixels. We extract features from Conv2D_11 
layers and features maps of size 14x14 are used. 
 

3.6.2 R-FCN 
 
The parameters set are identical to those of R-CNN with 
use of crop_and_resize, SGD with momentum 0.9, use of 
batch normalization,etc. R-FCN was trained using Resnet, 
Inception Resnet and MobileNet[10] feature extractors.  
 
Resnet 101: Features are extracted from block3 layer, the 
stride size is set to 16. The learning rate is initially set to 
3e-4 with a decaying factor reducing it 10 times after 
every million steps, and the images are resized to 21x21.  
 
Inception Resnet: The initial learning rate is set to 7e-4, 
the strides are set to 16, the features are extracted from 
Mixed_6a layer. 
 
MobileNet: The initial learning rate is set to 2e-4, the 
features are extracted from Conv2d_11, the stride is set to 
16 pixels, and the batch size is set to 128. The activation 
function of ReLU is used. 
 

3.6.3 SSD 
 
Batch normalization is used in all layers and the weights 
are initialized with a standard deviation of 0.03. The 
convolutional feature maps were added and all of them 
used for prediction, with the convolutional layers being 
added with a spatial resolution, decaying by a factor of 2.  
 
VGG-16: L2 normalization was used in the conv4_3 layer, 
it was used along with fc7 layers and appended with other 
layers with depth 512, and 4 other layers with depth 
256.We use an initial learning rate of 0.003 .  
 
Resnet- 101: The feature map is used from the last layer 
of Conv4 block, the strides used is 16. Additional layers are 
appended , who have spatial resolutions of 
512,256,256,256,256 respectively. An initial learning rate 
of 3e-4 is used. 
 

Inception Resnet: The initial learning rate is set to 0.005, 
with a decaying factor of 0.8 after every 700k steps. The 
activation function ReLU is used . Mixed_6a and 
Conv2d_7b is used by appending with additional 
convolutional layers of depth 512,256,128 respectively. 
 
MobileNet: The initial learning rate is set to 0.004 and we 
have used conv_11 and conv_13 layers with four 
additional layers with decaying spatial resolution with 
depths of 512,256,256 ,128.The activation function ReLU 
is used . 
 

4. RESULTS 
 
In this section we compare the training and testing times, 
with more focus on the testing times of the different model 
combinations and what different we obtain with different 
hyperparameter tuning. The GPU times that have been 
clocked are mentioned. Since the feature extractors used 
are pretrained on the Imagenet dataset, so one can 
intuitively think that a good performance on Imagenet 
dataset must correlate with a good mAP score on the 
COCO dataset. 
 

Table -1:The comparison of different feature extractor 
model’s accuracy on imagenet and their max and min mAP 

scores on COCO dataset 
 

Model 
Name 

Max mAP 
score(COCO
) 

Min mAP 
score(COCO
) 

Imagenet 
Accuracy 

VGG-16 23 19.8 0.71 

Resnet-101 29 22.9 0.764 

Inception 
Resnet 

30 20 0.804 

MobileNet 18.8 14 0.712 

 
 
Let us get into more specifics of the process and discuss 
the training and testing times of different combinations, 
and later on their mAP scores as well. The fastest model 
combination was SSD MobileNet trained on a low 
resolution image of 300, The slowest combination was 
Faster R-CNN Inception Resnet trained on a resolution of 
600. The least accurate model was R-FCN MobileNet, 
whereas the most accurate model was Faster R-CNN 
Inception Resnet. 
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Table -2: Some interesting frontiers of the models on the 
test sets , in terms on their mAP score on the COCO 

dataset. 
 

Model Mini validation 
mAP 

Test dev mAP 

SSD MobileNet(faste 
st) 

19.3 19 

(100 proposals) 
Faster 
R-CNN Resnet- 
101 ( good balance) 

31 30.9 

(300 proposals) 
Faster R-CNN 
Resnet-101( good 
balance) 
Model 

33.2 33 

(Most Accurate) 
Faster R-CNN 
Inception 
Resnet 

34.7 34.2 

(least Accurate) 
R-FCN 
MobileNet 

13.8 13.4 

                                                        

4.1 Analysis 
 
It is noted that usually SSD and R-FCN models are faster 
than their counterparts, also Faster R-CNN leads to much 
slower times, taking more than 100ms per image and 
giving the most accurate models of them all. Although, R-
FCN being the most accurate, they can be tuned to be 
faster by changing the no of regions proposed. It is also 
found that the intuition of feature extractors accuracy 
correlating with the mAP scores on the COCO dataset 
seems to be true only for Faster R-CNN and R-FCN as SSD 
models as less reliant on the classification accuracy of 
their feature extractors. The number of region proposals 
for Faster R-CNN and R-FCN can be reduced without 
affecting the mAP score by much, in turn saving lots of 
computation. We found that , in Faster R-CNN Inception 
Resnet, the mAP score with 300 proposals was 34.2, and it 
gave a mAP score of 28.7 with just 10 proposals, although 
the sweet spot is when we used 50 proposals as we are 
able to achieve more than 93% accuracy of those trained 
with 300 proposals by saving 3 times the running time. As 
far as memory utilization is considered, Faster R-CNN 
inception Resnet consumes the most memory whereas 
SSD MobileNet consumes the least, unsurprisingly, it is 
correlating with the speed of these models. The models 
performed much better on bigger images with more 

resolutions. In fact, SSD performed better than Faster R-
CNN and R-FCN on bigger images with light feature 
extractors. 
 

Table -3:Testing time on GPU with mAP scores of all the 
combinations , the R-FCN and Faster R-CNN rows use 300 

proposals in the above table. 
 

Model Combination mAP 
score 

GPU 
time 

SSD MobileNet 19 40 

SSD VGG-16 20.5 130 

SSD Resnet-101 26.2 175 

SSD Inception Resnet 20.3 80 

Faster R-CNN MobileNet 
 

19 118 

Faster R-CNN VGG-16 24.9 250 

Faster R-CNN Resnet-101 
 

33 396 

Faster R-CNN Inception Resnet 
 

34.2 860 

R-FCN MobileNet 13.4 75 

R-FCN Resnet-101 30.5 386 

R-FCN Inception Resnet 
 

30.7 388 

 
 
5. CONCLUSION 
 
We have put forward a comparative study of state of the 
art object detectors which use convolutional neural 
networks. We have addressed their issues and 
performance on a common hardware and also tested 
different combinations of them, all on the COCO dataset. 
We discovered that SSD performs much better with light 
weight feature extractors on bigger images, competing 
with the most accurate of models. We also found that 
fewer proposals increase speed without compromising 
much on the mAP scores.We wish to try different 
combinations and find better results and sweet spots 
which can be applied to specific use cases. 
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