
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 10 | Oct -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 572

IOT Based Smart City: Weather, Traffic and Pollution Monitoring System

1. Introduction:

Internet has become an inevitable part of urban life. Using
internet was a big deal twenty years before but today even
a child can use smartphones and laptops easily. Popularity
of 3G, 4G technologies, their affordable rates and ease of
their use ultimately have resulted in large number of
Internet users today. As internet is used for interaction
with other users, through various platforms such as
Facebook, twitter, mails and what not, we come across the
concept called Internet of Things. The term itself is self-
explanatory There are different means by which various
electronic instruments can communicate with each other.
This can be used for ample of applications. Eventually
perfect implementation of such system which can
communicate with each other can be used to create an
efficient, error free system due to human interactions.
There are limitations to the extent up to which a man can
work on the other hand with proper maintenance and
handling of machines, there is theoretically no limit on the
productivity of a machine. It is estimated that there will be
around 20.5 billion devices connected to internet by the
end of 2017. The principle of internet of things can be
applied in healthcare, industry, education so on and so
forth.

2. Idea and implementation:

As mentioned earlier, this paper illustrates on a prototype
which will give weather, pollution and traffic conditions of
different parts of a city on a single click.

Sensors: Humidity ,Temperature ,Raindrop ,Carbon
detection (pollution), Noise sensor
Processors: Raspberry Pi

HTML, CSS for the front end of the project for developing
the site which will play role as application layer that is the
actual communication between user and the interface.
AWS Server: For backend of the project.

2.1 Hardware Requirements:

The hardware of this monitoring system mainly consists of
three sensors and raspberry pi. The sensors are

1 DHT11(Temperature and Humidity sensor)

2 Raindrop sensor

3 MAX4466(Noise sensor)

2.2 Software and Other Requirements:-

 Amazon Web Services:

Amazon web services is a cloud platform which is secure
which offers various tools for implementation of compute
power ,database storages, services like content delivery
and other functionalities to help businesses thrive. Millions
of customers are using these web services. One such
service is AWS IoT. This service is being used for the
prototype.

AWS IoT:

AWS IoT has prime functionality of creating bidirectional
communications with devices which are connected over
internet (sensors, actuators, embedded devices, or smart
appliances) to the AWS cloud. This gives us privilege of
collecting telemetry data from multiple devices and store
and analyze the data . Appropriate applications also can be
created so as to eneble users to control these devices from
their phones.

AWS IoT consists of following components :

1. Device gateway: This enables devices to securely and
efficiently communicate with AWS IoT.

Swapnil Shah, Ketan Deshpande, Dr. R. C. Jaiswal
--***--
Abstract: There is a room for an improvement when real
time data monitoring is concerned. We are looking forward
to give the necessary information of various aspects of a
particular city like its weather, traffic and the level of
pollution. No single platform gives us the information about
these things on a single click. Furthermore, time is a crucial
aspect of urban lifestyle. This paper will provide a prototype
which will provide real time traffic scenario in different
parts of a city in order to avoid your hectic journey also with
the help of sensors and raspberry pi , real time data will be
fetched and displayed on a web page. These values will be
real time values of actual weather conditions which you
can’t get on internet (generally those are predictions).

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 10 | Oct -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 573

2. Message Broker: This provides a secure mechanism for
devices and AWS IoT applications to publish and subscribe
message from each other. In this case MQTT protocol can
be used in two ways. First is to use MQTT directly and
second is to use MQTT over WebSocket to publish and
subscribe. HTTP REST interface can be used to publish.
3. Rules Engine: This provides integration of messages to
other services like Amazon S3, Amazon DynamoDB,
Amazon Lambda.
4.Security and Identity service
5. Thing Registry: It is also referred as device registry
which organizes the resources with each thing.
6. Thing Shadow : Also can be reffered as device shadow. It
is a JASON document which I used for storing and
retrieving the current state of information for a thing (It
may be device or app etc.)

Protocols : a)MQTT b)HTTP c)MQTT over

Web socket: This is available on TCP port 443. This
allows message to pass through most firewalls and web
proxies.

 Python: We have used python programming

language to take serial data from raspberry pi. In
python there are modules for mqtt, websocket
programming. We have just imported them and used
them.So python is being used to connect to aws thing,
implement mqtt, websocket and to publish the
message over cloud and subscribe it.

 HTML and CSS: We are using basic web designing
language HTML (Hypertext markup language) for
fundamental implementation of web page. It forms a
general structure of web page and will be helpful for
basic layout.As we need to make user interface more
user friendly and attractive we need to go for CSS .
CSS provides some unique features

2.3 DynamoDB database :

It is noSQL databases which have better scalability and
speed. There is no need for software pitching, hardware
provisioning, replication and set up and configuration as
well as cluster scaling . Any amount of data can be stored
and retrieved from database. DynamoDB automatically
adjusts the data through various servers for handling of
throughput and storage requirements. A partition key is
used as a primary key in order to sort data in order. Read
operation and write operation on database is carried out
with several steps.

3. Implementation and Execution.

We connected all the sensors to controller . The power
requirement of all sensors provided by RaspberryPi itself.
After that writing a code for particular sensor we got the
data on the RaspberryPi

Now, we get data in the raspberry pi. We have to upload
this data on the cloud. As mentioned earlier we are using
AWS (Amazon Web Services) for that. In AWS we are going
to use their IOT service. We have to handle that data from
the sensor and for that we are going to use non structures
database like DynamoDB.
So, the flow of our project is as follows,

3.1 CREATE AWS IoT thing

We have created account on AWS. We have selected AWS
IOT service on AWS.

In AWS IOT we have created ‘Thing’ which is as if
raspberry pi on the cloud. We downloaded all the private,
key’s certificates of the thing. They are very important in
order to interact with the thing, to connect to it and all.
Also this certificates are not supposed to be shared at all.

 Next step is creating the policy, this policy
signifies which functionalities you are going to
have on your thing. Then, attach certificates to the
policy and policy to the thing.

 You are done with establishing thing. Now, we
have to think of like what should be done when
any message is sent to this AWS thing.

3.2 Create an IAM Role for AWS IoT

In order for IoT to interact with other AWS services, you
need to create an IAM role so that it has the right
permissions. Copy the following code into a file and call it
trust-policy.json.

Then to create the IAM role, run the create-role command
giving it the Assume Role policy document that you just
created:$ aws iam create-role --role-name iot-actions-role
--assume-role-policy-document file://path-to-file/trust-
policy.json

Make sure you save the ARN from the output of this
command as you'll need it to create a rule later on.
(rules enable you to access other AWS services through
IoT)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 10 | Oct -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 574

3.3 Grant Permission to Role

Later on we're going to go through a couple of examples
for using the AWS IoT service, one to post data to a
DynamoDB table and then one to invoke a Lambda
function. To do this we have to create a policy and then
attach it to the role we created in the previous section.
Copy the following code into a new file and name it
whatever you like. We've called it iam-policy.json:

Run the create-policy and link to the file path you just
created:

$ aws iam create-policy --policy-name iot-actions-policy --
policy-document file://IAM-policy-document-file-path

Make a note of the ARN that is returned in the command
line and then run the attach-policy-role with this
command:

$ aws iam attach-role-policy --role-name iot-actions-role --
policy-arn "policy-ARN"

You should now be able to interact with DynamoDB and
Lambda!

3.4 Creating a Table and Rule to insert message into

DynamoDB

Create a table in the DynamoDB console

Create a rule to trigger on a topic of your choice and insert
an item into DynamoDB. Add the following to a file and call
itdynamoDB-rule.json. Copy the arn from the iot-actions-
role we created earlier for the 'roleArn':

Create a topic rule using the create-topic-rule command
with the path to the DynamoDB rule from the previous
step:

$ aws iot create-topic-rule --rule-name saveToDynamoDB -
-topic-rule-payload file://path-to-file/dynamoDB-rule.json

Now, we just need to create the rule to evoke lambda
function and configure it.

With this we done with setting AWS thing, dynamoDB and
lambda function.

3.5 Implementing MQTT with web socket
programming

We are using python for Websocket connection with the
server first using the socket library in it.For mqtt we have
to use paho.mqtt.client in python and by giving proper
certificate and details of the AWS thing we can publish
reading of the sensor on the cloud.We can also see that
reading in the table in AWS dynamodb console.

3.6 Extraction of data from dynamoDB

We are focusing on extracting the data from dynamoDB
that is provided by sensors and which is real time data to
our web page. This should be very efficient as the data is
real time and need to be displayed instantaneously. We
have programmed certain functions which would perform
this operation. The updated web page will be a structure
like stack in which the new data will be overwritten on
new data and will be displayed.

3.7 Implementation by Dynamodb:

The above implementation was by AWS IOT. We can also
implement this all by just using the dynamodb database of
AWS. This implementation is as follows,

We have all our sensor and raspberry pi with us and we
have to design our system. Let’s divide our whole system
in 3 parts.

1] The hardware interfacing.
2] The database.
3] Front end design.
Let us take a look of it one by one

3.7.1 The hardware interfacing:

 We have to interface all the sensor to raspberry pi.
Actually raspberry doesn’t have analog pins so we
took all digital sensors only.

 To interface the sensor first thing we have to do is,
choosing the mode of pin assignment. By the
GPIO.setmode(GPIO.BOARD), we chose the
BOARD mode. It means that we can use all pin
numbers on board as it is directly in the program.

 we have to assign pins as input as we have to take
data from the sensors. This can be done by
GPIO.setup(11, GPIO.IN) where pin number 11 in
the input now.

 For the DHT11, we have used library directly so
we have to import in in the code. It’s functions

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 10 | Oct -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 575

directly returns temperature and humidity.
 Rain sensor directly gives output as 1 if rain is

there on that particular input pin and 0 if not.
 So it was all about the interfacing the sensors and

we will get all data from them on the raspberry pi.

3.7.2 The database:

So far we got data on raspberry pi from the sensor. Now
we want to use some kind of database which will be
storing this data and we must be able to retrieve the latest
entered value from the database. Here, in our project we
have used dynamodb as our database. It is provided by
AWS only. To use this dynamodb is very simple and now
we will take a look at it.

Our backend will be like, for our each hardware module we
will have different table having different names. Data will
be uploaded from raspberry pi in that particular table
continuously. On the web-portal

Uploading data in Dynamodb:

 We have used python to upload data from
raspberry pi to Dynamodb table. We did this by
using python-aws connector named ‘boto’.

 To authorize the aws account we have to provide
the Secrete key and Access key on this python
code.

 To have synchronization i.e. by entering name of
place user must get the only the latest data
updated in that table, we have to give little
thought to it.

 From the system time we calculated one value and
we gave it as sortkey of our dynamodb table.
Reading of all the sensor along with this key
named as ‘time_t’ we entered in the table.

 That part was quite easy, we just need to select
particular table and define one tuple and enter all
the attribute and its value in that table. You will
understand it by taking look of code.

Dynamodb table:

 The table will have different column for different
sensor along with one primary key and sort key.

 As such we don’t need primary key here but we
need sort key to compare the time while
retrieving the record value. In our case time key is
named as ‘time_t’.

 The attribute of the tables are delta(primary key),
time_t (sort key), temperature (attribute),

humidity (attribute), rain (attribute).
 This is the dynamodb table which is ready to store

data.

 Retrieving data from the table:

 Now we have our table ready on AWS server
whenever user refreshes webpage the latest value
will be retrieved from the database. Let’s see how
exactly this happens.

 Here we are using jsp as a web technology so that
we can execute java code to get data from table
and display is to user.

 There are connectors in java to access the
dynamodb table. By making use of them we are
getting proper table the one which is entered by
the user and then by calculating that value of
time_t from the system time we retrieve that one
particular record having data of all sensors and we
just display it.

Results:

 After designing this system, we will be able to
upload data on server which we get on Raspberry
Pi. The output for all the sensors is in directly in
integer form.

 The accuracy we got for sensors was 85% initially.
After using the cross validation set it increased up
to 94-95%. Initally we used port 1883 to transfer
data on the server but then we came to know
about more secure port connection. So now we
are using port 8883 for secured connection.

 Thus, our result is more efficient and can be used
for further extension of prototype. We have
experimented our system with different sensors
and at the end we selected the sensors according
to their accuracy. The data from the sensors is just
in the number format which further pass to
raspberry pi for further processing. The data feed
into the system and then passed through several
pre-processing steps before it can be recognized.

We are able to monitor the traffic conditions, weather
status and pollution conditions on web page of different
parts of city. This helped us not only to analyze and study
the parameters but also proved how efficiently real time
data can be displayed with significant error minimization.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 10 | Oct -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 576

Reference:

[1] J. Jin, J. Gubbi, S. Marusic and M. Palaniswami, "An
Information Framework for Creating Smart City
Through Internet of Things," in IEEE Internet of
Things Journal, vol. 1, no. 2, pp. 112-121, April 2014.

[2] F. Zhu, Z. Li, S. Chen and G. Xiong, "Parallel
Transportation Management and Control System and
Its Applications in Building Smart Cities," in IEEE
Transaction on Intelligent Transportation Systems,
vol. 17, no. 6, pp. 1576-1585, June 2016.

[3] Aceves, E.; Larios, V. M. “Data Visualization for

Georeferenced IoT Open Data Flows for a GDL smart
City Pilot” IEEE Guadalajara GDL CCD White Papers,
2015.

[4] Mohammed Atiquzzaman “Special Issue on Internet of

things:Smart things network and communication”
Spring 2014.

[5] S. Misbahuddin, J. A. Zubairi, A. Saggaf, J. Basuni, S. A-

Wadany and A. Al-Sofi, "IoT based dynamic road traffic
management for smart cities," 2010 12th International
Conference on High-capacity Optical Networks and
Enabling/Emerging Technologies(HONET), Islamabad,
2015, p p. 1-5.

[6] http://www.arduino.org/?gclid=Cj0KEQjwvve_BRDm

g9Kt9ufO15EBEiQAKoc6qvpeQ90AOeyTH2oEq83P6b
5VTJ1HBOJP0dJuCjfVTlQaApN68P8HAQ

[7] https://www.raspberrypi.org/

[8] https://thenewboston.com/

[9] The Second Machine Age:Work,Progress and Properity

in a Time of brilliant technologies. By Erik
Brynjolfsson and Andrew Mcfee.

[10] Getting Stareted with IOT by Cuno Pfster.

[11] The Silent Intelligence by Daniel Kellmereit and Daniel

Obodovski.

[12] IOT Disruptions:The Internet of Things-Innovation
&jobs by Sudha Jamate.

[13] Meta Products:Building the Internet of things by

Wimer Hazenberg.

[14] Designing connected products by Claire
Rowland,Elizabeth Goodman,Martin Charlier.

http://www.arduino.org/?gclid=Cj0KEQjwvve_BRDmg9Kt9ufO15EBEiQAKoc6qvpeQ90AOeyTH2oEq83P6b5VTJ1HBOJP0dJuCjfVTlQaApN68P8HAQ
http://www.arduino.org/?gclid=Cj0KEQjwvve_BRDmg9Kt9ufO15EBEiQAKoc6qvpeQ90AOeyTH2oEq83P6b5VTJ1HBOJP0dJuCjfVTlQaApN68P8HAQ
http://www.arduino.org/?gclid=Cj0KEQjwvve_BRDmg9Kt9ufO15EBEiQAKoc6qvpeQ90AOeyTH2oEq83P6b5VTJ1HBOJP0dJuCjfVTlQaApN68P8HAQ
https://www.raspberrypi.org/
https://thenewboston.com/

