Volume: 04 Issue: 10 | Oct -2017

RELIABILITY ANALYSIS OF CONCRETE FILLED STEEL TUBE COLUMNS BY FOSM AND SUBSET SIMULATION TECHNIQUE

Naveen Kumar. S¹, Khalid Nayaz Khan², N.S.Kumar³

¹Final Year Student, Department of Civil Engineering, Ghousia college of Engineering, Karnataka, India ²Associate Professor, Department of Civil Engineering, Ghousia college of Engineering, Karnataka, India ³Professor and Director (R&D-Civil Engineering), Department of Civil Engineering, Ghousia college of Engineering, Karnataka, India

_____***___

Abstract - In this study, controlled, deterministic and reliability found optimal design of concrete filled with circular composite columns is entrusted. The main design work is to attain the nominal load taking ability with the less deflection. Analytical Study and Reliability analysis of Steel Tube with concrete filled under monotonic loading is obtained in this study. Analytical results are fetched by the Finite element software NASTRAN are verified using ACI-318-1999 code. Variation may be found to be 20% range accordingly to the above code.

The reliability technique is directed under the probabilistic variables such as diameters, thickness, length and grades of concrete with percentage of glass fibers. FOSM method is used for the analysis of the results gained. Subset simulation was adopted for the analysis.

KeyWords: CFST, FOSM, SubsetsimulationTechnique, **Reliability.**

1. INTRODUCTION

Concrete-filled steel tube (CFST) sections comprise of a steel tube in filled with concrete. The solid in fill enhances compressive properties of the composite section and decreases the potential for local buckling. Conversely, the steel tube acts as longitudinal and horizontal support for the concrete infill helping it to resist shear, tension, bending moment and providing confinement to the concrete.

The steel tube in a concrete filled tubular section (CFST) offers both longitudinal and lateral support and as a result, it is subjected to biaxial stresses whereas, concrete is stressed tri-axially. Concrete filled tubular columns have found their application as a part of structures and scaffolds. Research on CFST is being carried out in China since 1970s. CFST has emerged as a popular structural member because of its highly desirable structural properties, which include high strength, stiffness and high ductility. The advantages of the CFST over other composite members are that the steel tube gives formwork to the concrete; the in-filled concrete restrains local buckling of the steel tube.

Reliability is hypothetically characterized as the probability of achievement as the recurrence of failures or regarding accessibility, as a probability got from reliability, testability and maintainability. Testability, maintainability, and maintenance are regularly characterized as a piece of "reliability engineering" in Reliability Programs. Reliability assumes a key part in the cost-viability of systems.

{1-probability failure} = Reliability

First order second moment method

In this method, the arbitrary factors are described by their first and second moments. In assessing the first and second moments of the disappointment work, the first order estimation is utilized. Therefore this method is called as FOSM. The FOSM is gotten from Taylors formula for the extension of a capacity f(x) about a point x.

Subset simulation technique ≻

Subset simulation technique is a strategy utilized as a part of reliability models to registering little (i.e., uncommon occasion) disappointment probabilities experienced in designing frameworks.

The Monte Carlo simulation (MCS) can give high-reliability assessment exactness. Be that as it may, the effectiveness of the unrefined MCS is very low, in substantial part since it is computationally costly to assess a little disappointment likelihood. In this paper, subset simulation-based reliability analysis (SSRA) ways to deal with enhance the computational effectiveness in reliability-based Optimization (RBO) issues.

International Research Journal of Engineering and Technology (IRJET) Volume: 04 Issue: 10 | Oct -2017 www.irjet.net

2. EXPERIMENTAL RESULTS

IRIET

Table -1: Result

Sl no	D mm	T mm	L mm	f _{ck}	fy	Р
1	33.7	2.6	300	23.93	310	118
2	33.7	2.6	300	28.06	310	121
3	33.7	2.6	300	29.01	310	122
4	33.7	3.2	300	23.93	310	132
5	33.7	3.2	300	28.06	310	136
6	33.7	3.2	300	29.01	310	136
7	33.7	4	300	23.93	310	152
8	33.7	4	300	28.06	310	154
9	33.7	4	300	29.01	310	154
10	33.7	5	300	23.93	310	173
11	33.7	5	300	28.06	310	175
12	33.7	5	300	29.01	310	175
13	33.7	6.2	300	23.93	310	176
14	33.7	6.2	300	28.06	310	198
15	33.7	6.2	300	29.01	310	198
16	33.7	7.6	300	23.93	310	220
17	33.7	7.6	300	28.06	310	221
18	33.7	7.6	300	29.01	310	223
19	33.7	9.4	300	23.93	310	246
20	33.7	9.4	300	28.06	310	248
21	33.7	9.4	300	29.01	310	250
22	33.7	11.4	300	23.93	310	269
23	33.7	11.4	300	28.06	310	270
24	33.7	11.4	300	29.01	310	271
25	33.7	13.6	300	23.93	310	285
26	33.7	13.6	300	28.06	310	285
27	33.7	13.6	300	29.01	310	288

3. RELIABILITY ANALYSIS

Limit state function

M = R - S

Where R and S are statistically independent

They are assumed to be regularly disseminated

 $\mu_{m} = \mu_{R} \cdot \mu_{S}$ $\sigma_{M}^{2} = \sigma_{R}^{2} + \sigma_{S}^{2}$ $P_{f} = P (M < 0)$ = P [(R - S) < 0]

Where P_f = probability of failure If M= Ordinary variant, then P_f = 1- $\emptyset(\mu_m/\sigma M)$ Reliability index $\beta = \mu_m/\sigma M$

 \emptyset = Cumulative distribution function of the standard ordinary variant.

3.1 Sample study

The reliability analysis of a CFST column member having D*t=33.7mm*2.6mm and length of 300mm has been examined. The material properties are as follows in the in the employing of the reliability analysis. Compressive strength of the unconfined concrete (f_{ck}) is 28.06N/mm², elastic modulus of steel (E) is 2000Gpa and yield strength of steel (f_y) 310N/mm².

Solving the above parameters by Subset simulation technique using the COMREL 9 method the reliability index (β) is -1.522.Their respective probability of failure is found to be P_f=-0.06426,as we know that reliability for any structural member subjected to the axial load is R=1-P_f =93.574%.

Table -2: Reliability Analysis

Sl	п	CCT(Q)	D	р	R
no	Pu	221 (b)	$P_{\rm f}$	r _f r	
1	118	-1.405	0.0871	0.9129	91.29
2	121	-1.522	0.0643	0.9357	93.57
3	122	-1.522	0.0643	0.9357	93.57
4	132	-1.504	0.1492	0.8508	85.08
5	136	-1.136	0.1292	0.8707	87.07
6	136	-1.136	0.1292	0.8707	87.07
7	152	-0.900	0.1706	0.8294	82.94
8	154	-0.915	0.1685	0.8314	83.14
9	154	-0.915	0.1685	0.8314	83.14
10	173	-0.619	0.2743	0.7257	72.57
11	175	-0.643	0.2611	0.7389	73.89
12	175	-0.650	0.2547	0.7452	74.52
13	176	-0.559	0.2915	0.7085	70.85
14	198	-0.577	0.2843	0.7156	71.56
15	198	-0.577	0.2843	0.7156	71.56
16	220	-0.429	0.3372	0.6627	66.27
17	221	-0.451	03264	0.6736	67.36
18	223	-0.473	0.3192	0.6808	68.08
19	246	-0.300	0.3821	0.6197	61.97

© 2017, IRJET

International Research Journal of Engineering and Technology (IRJET) e-

T Volume: 04 Issue: 10 | Oct -2017

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

20	248	-0.348	0.3669	0.6330	63.30
21	250	-0.369	0.3590	0.6409	64.09
22	269	-0.248	0.0871	0.5948	59.48
23	270	-0.269	0.0643	0.6025	60.25
24	271	-0.279	0.0643	0.6125	61.25
25	285	-0.197	0.1492	0.5753	57.53
26	285	-0.212	0.1292	0.5831	58.31
27	288	-1.019	0.1292	0.5753	57.53

4. RESULTS

Following are the results obtained from the L9 taguchi's approach with the varying diameters, constant length and grade of concrete and steel is as per the taguchi's level-3 approach (TABLE-4) with the 3-factors.

Table: 4 Taguchi's L 9 Orthogonal array approach

Sl no	Pu	β(subset	Pf	Reliability	R%
		simulation)			
1	118	-1.405	0.087	0.912	91.2
5	136	-1.136	0.129	0.870	87
9	154	-1.136	0.129	0.870	87
11	152	-1.019	0.137	0.866	86.6
15	177	-1.003	0.158	0.741	74.1
16	190	-0.565	0.187	0.712	71.2
21	250	-0.369	0.360	0.640	64
22	269	-0.248	0.406	0.594	59.4
26	285	-0.212	0.417	0.583	58.3

Table: 5 strength/weight ratio obtained from Taguchi's method

Sl	D	Т	Pu	Weight	Strength
no	mm	mm			/weight
1	33.7	2.6	118	6.8	17.49
5	33.7	2.6	136	6.8	20.02
9	33.7	2.6	154	6.8	22.73
11	42.4	3.2	152	13.8	11.07
15	42.4	3.2	177	13.8	12.84
16	42.4	3.2	190	13.8	13.79
21	48.3	4	250	22.25	7.93
22	48.3	4	269	22.25	8.65
26	48.3	4	285	22.25	10.11

Fig: 1 Grade of concrete vs Reliability (Dia-33.7mm)

Fig: 2 Diameter vs Reliability

Fig: 3 Taguchi's method vs Reliability

5. CONCLUSIONS

- The Reliability of member increases with increases in diameter (Fig:2).
- Because of the load carrying ability mainly depends upon the strength of the concrete as the grade of concrete increases the reliability also increases (Fig:1).

© 2017, IRJET

Т

 \triangleright It can be observed from the Fig:3, the maximum reliability obtained is 93.57% for the T1,G2 and D2 Taguchi's L9 array combination.

REFERENCES

- Ranganathan. R. (1990), "Reliability Analysis and Design [1] of Structures" Tata McGraw Hill.
- [2] Fred Moses, (1997) "Problems and prospects of reliability-based optimization", Journal of Engineering Structures, Vol. 19 No. 4 pp. 293-301.
- [3] Chethan Kumar. S, Khalid Nayaz Khan and Dr N.S.Kumar(2016) "Reliability analysis of cft column by simulation approch" M.Tech dissertation 2016.
- [4] Kavya.M.S, Dr. N.S. Kumar & Dr. Mohamed Ilyas Anjum "Behavior Of Composite Circular Steel Columns In filled With Fiber Reinforced Concrete Subjected To Monotonic Loading" M.Tech dissertation 2012.
- [5] Reliability analysis of a reinforced concrete column designed according to the Eurocodes.Holický, Milan / Vrouwenvelder, Ton, IABSE reports = Rapports AIPC = IVBH Bericht pp251-264.
- [6] Ramesh Muthu.D& Dr.N.S.Kumar (2013) "Experimental Investigation on Concrete Filled Stainless Steel Tubular (Cfsst) Short Columns under Monotonic Loading". M.Tech dissertation 2012.