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Abstract – In general for every application the accuracy 
and the performance of the controller is gaining much more 
importance than economic and complex design point of view. 
This paper presents the design of a robust PI or PID controller 
using numerical optimization approach method which is 
simple and also effective. The performance of the controller for 
different system models have been demonstrated using the 
simulation results which show the effectiveness of the 
proposed controller. 
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1. INTRODUCTION 
 
The proportional-integral (PI) and proportional-

integral-derivative (PID) controllers are widely used in 
many industrial control systems and a variety of other 
applications requiring continuously modulated control for 
several decades, Ziegler and Nichols proposed their first PID 
tuning method. This is because PID controller continuously 
calculates an error value e(t) as the difference between a 
desired setpoint and measured process variable and applies 
a correction based on proportional, integral, and derivative 
terms and also PID controller structure is simple and its 
principal is easier to understand than most other advanced 
controllers, it is famous for the applications like stabilizing 
the processes, quick tracking the change of set points and 
rejecting unwanted signals. 

 
However, in the tuning process, whereby, the proper 

values for the controller parameters are obtained is a critical 
challenge. Also, the traditional PID controller lacks 
robustness against large system parameter uncertainties, the 
reason lies in the insufficient number of parameters to deal 
with the independent specifications of time-domain 
response, such as, settling time and overshooting [1]. Much 
effort is involved in designing robust PI, PD, or PID 
controllers for uncertain systems, based on different robust 
design methods, known in literature as Kharitonov's 
Theorem, Small Gain Theorem, H∞ and Edge Theorem [2]. A 
graphical design method of tuning the PI and PD controllers 
achieving gain and phase margins is developed in [3]. Most 
of real plant operate in a wide range of operating conditions, 
the robustness is then an important feature of the closed 

loop system. When this is the case, the controller has to be 
able to stabilize the system for all operating conditions. To 
this end, it is possible to employ an internal-model-based 
PID tuning method [4]. However, this method gives very 
slow response to load disturbance for lag-dominant 
processes because of the pole-zero cancellations inherent in 
the design methodology. Another popular approach with 
similar emphasis is the tuning of PI or PID controller by the 
gain and phase margin specifications [5]. Gain margin 
and phase margin have always served as important 
measures of robustness. It is well known that phase. margin 
is related to the damping of the system, and can 
therefore also serve as a performance measure. Due to the 
slow response to load disturbance and their dependency on 
gain and phase margin in other methods, makes inaccurate 
and complex calculations. Numerical optimization approach 
uses the polynomial as characteristic equation and taking the 
constrains into consideration makes method accurate with 
ease.   

 

2. NUMERICAL OPTIMIZATION APPROACH 
 
2.1 Process model 
 

The proportional-integral-derivative(PID) controller 
is widely used in the process industries due to its simplicity, 
robustness and wide ranges of applicability in the regulatory 
control layer. However, a very broad class is characterized 
by aperiodic response. The most important and commonly 
used category of industrial systems can be represented by a 
first-order plus dead time model given as, 
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Note that this process model can only be used for the 
purpose of simplified analysis. But the actual may have 
multiple lags, non-minimum phase zero, etc. Similarly, 
another industrial process is characterized as non-aperiodic 
response [9]. This is represented by a second-order plus 
dead-time model given as, 
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2.2 Robust PI/PID Controller design 
 
Now consider the PID feedback control system, here 

G(s) represents the transfer function model and K(s) is the 
transfer function of standard PI/PID controller 
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Fig. 1. PID feedback control system 
 
 We know that, 

PI: ( ) i
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Therefore, the transfer function of the closed loop system is 
respectively defined as Sensitivity Function S(s)  
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Where,      L S K s G S  is the open-loop transfer function, 

and Complementary sensitivity function C(S) 
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The quantity ( )T j  represents the input-output gain at the 

frequency 2 /  , for a PI/PID controller this gain is equal 

to one in the low frequency domain, that is steady-state 

error is equal to zero. It is well known that pM is related to 

overshoot for the step response of closed loop system, the 

quantity max ( )pM T j   is the peak magnitude of 

frequency response of closed loop response. In order to 
impose good transient response, it is necessary to 

have
p pM M  . In an equivalent manner the following 

constraint is required as 1 1D D  , where 1D is the first 

overshoot of the step response and 1D 
upper bound value 

of this overshoot now a lower bound pseudo-damping factor 

m , which is related to the upper bound of the first 

overshoot by [10]. the relation 1

2 2

1

ln( )

ln( )
m

D

D










 and 

2

1

2 1 ( )
p

m m

M
 

 


. For a good transient response, it 

then required that m   and it is necessary to determine 

the parameter pk , ik ,and dk  such that  

, ,

1
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2.2.1 PI controller with first-order time-delay 
systems 

 
Consider the standard PI controller (3) and the 

process model (1), the open loop transfer function is given as  
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Now the closed loop transfer function is given by  
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Therefore, the polynomial characteristic equation of the 
closed loop system is given by 
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Which is in the form of 2 2
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By comparing (7) and (8) we get 
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The closed-loop stability impose a > 0, which is verified if  
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With b > 2. Taking into account the first constraint (6) one 

can choose m   which gives 
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Therefore, the optimization problem is then written as  
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PI controller is applicable only when the process dynamics is 
in first order. For higher-order processes the PI controller is 
not performing well, in this case the PID controller will be 
used. 

 
2.2.2 PID controller with first-order time-delay 
systems 
 
Performance obtained with the PI controller can be 
improved by the using PID controller. Consider PID 
controller (3) and the process model (1), the open loop 
transfer function is given as 
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And the closed loop transfer function is given 
 

 
2

2 20

(1 )
( )

(1 )(1 ) (1 )
2

p i d i

i p i d i

k k T s k T s
T s

t
T s s s k k T s k T s

 


    

 

Therefore, the polynomial characteristic equation of the 
closed loop system is given by 
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Which is in the form of 2 2
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The closed-loop stability impose a > 0 which is verified if  
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Therefore, the optimization problem is then written as 
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2.2.3 PID controller with second-order time-
delay systems 
 
The method given above can be extended for the second-
order plus dead-time process model, Consider the standard 
PID controller (3) and the process model (2), the open loop 
transfer function is given as  
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And the closed loop transfer function is given by 
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Therefore, the polynomial characteristic equation of the 
closed loop system is given by 
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The closed-loop stability impose a > 0 which is verified if 
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With b > 1. Taking into account the first constraint one can 
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Therefore, the optimization problem is then written as 
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3. GAIN AND PHASE MARGIN METHOD 
 
3.1. PID FOR TIME DELAY SYSTEMS 

 
One of the method to tune the PID controller to pass 

through two design points on the Nyquist curve as specified 

by the gain margin  mA  and phase margin  m , [5]. An 

intermediate step of computing the simplified process model 
parameters (gain, time constant and dead-time) is 
performed and they are then used in the tuning formula. 
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( )cG s  and ( )pG s , gain and phase crossover frequencies as 

g  and p , and the specified gain and phase margins as 

mA  and m  respectively. The following set of equations has 

to be satisfied 
 
arg ( ) ( )

1

( ) ( )

( ) ( ) 1

arg ( ) ( )

c p p p

m

c p p p

c p p p

m c p p p

G j G j

A
G j G j

G j G j

G j G j

  

 

 

   

 





 

  (16) 

 
PID Controller (3), and process model assumed to be 
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For the process model, the phase crossover frequency 

(which is equal to the ultimate gain u ), the relation of the 
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ultimate gain ( uk ), ultimate period ( ut ), and the model 

parameters 1L  and 1  can be obtained. 
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Now 1L and 1  can be obtained from (18) 
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Choosing 12iT   to achieve pole-zero cancellation, 
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Therefore (23) gives the constraints for applying pole-zero 
cancellation in that the gain and phase margins have to be 
specified accordingly, such as 
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The pair ( 60 , 3) is found to be most appropriate, and 

assumed as default. Now using (18) and (22), we can obtain 
simple tuning formulas. 
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3.2. PI FOR TIME DELAY SYSTEMS 
 
PI controller based on first order (3) and process 

model assumed to be 
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Substituting (25) in (17), and introducing pole-zero 
cancellation we obtain simple tuning formulas 
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2

u
u

u

u

t
k k

t
L

t









 

 

 

 
When we use the above formula the gain and phase 

margins have to be specified accordingly, the constraint is 
given in (23) 

 

4. Robustness analysis and its performance 
 
Robustness is an important issue for a control system to 

result in satisfactory closed loop performances under un-
estimated parameter changes in the plant transfer function. 
Hence, this section illustrates the robustness of the proposed 
control structure and design method, kharitonov theorem 
and related approaches can be used for the robustness 
analysis of control systems with parametric uncertainty. 
The Kharitonov theorem states that an interval polynomial 
family, which has an infinite number of members, is Hurwitz 
stable if and only if a finite small subset of four polynomials 
known as the Kharitonov polynomials of the family are 
Hurwitz stable. Extensions of these methods and a 
discussion of the extensive literature on this subject can be 
found in [7]. 
  
Consider an integral order interval polynomial 
 

2 3 4 5

0 1 2 3 4 5( ) ......K s p p s p s p s p s p s        

 

Where min max,i i ip p p  
 

min0,1,2,....., ii p  and 
max

ip  are 

specified lower and upper bound of the i th perturbation, 

respectively. Kharitonov showed that the stability of the 
interval polynomial family (36) could be found by applying 
the Routh criterion to the following four polynomials. 
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min min max 2 max 3 min 4 min 5

1 0 1 2 3 4 5

max ax min 2 min 3 max 4 max 5

2 0 1 2 3 4 5

max min min 2 max 3 max 4 min 5

3 0 1 2 3 4 5

min max max 2 min 3 m

4 0 1 2 3 4

( ) ...

( ) ...

( ) ...

( )

m

K s p p s p s p s p s p s

K s p p s p s p s p s p s

K s p p s p s p s p s p s

K s p p s p s p s p

      

      

      

     in 4 max 5

5 ...s p s 

      (27) 
 

5. PI-PD Controller tuning for inverse 
response 





 Σ Σ Σ

Σ

Σ












K1(s) G

Gm G
K2(s)

d

r Y

 
Fig. 2. Control structure for controlling inverse response 

Ideal PI and PD controllers which are given by [11]. 
 

1

2

1
( ) (1 )

( )

i
p p

i

d d

k
K s k k

s T s

K s k T s

   

 

   (28) 

In the structure, G is the process transfer function model to 
be controlled which is given by 
 

2

( 1)
( )

sK Ts e
G s

s as b

 


 
    (29) 

 
The key point in order to obtain the standard closed loop 
transfer function and hence for deriving expressions to 
calculate PI-PD controller tuning parameters is to factorize 

the plant transfer function as 
_

( ) ( ) ( )mG s G s G s  where  

2
( )m

k
G s

s as b


 
    (30) 

_

( ) ( 1) sG s Ts e        (31) 

The closed loop transfer function of the structure given as 

 

_

1

1 2

( ) ( ) ( )
( )

1 ( ) ( ) ( )

m

m

K s G s G s
T s

G s K s K s


 
   (32) 

Using the appropriate expressions in (32), we can obtain the 
closed loop transfer function as 

11 3 2

( 1)
( )

( ) ( )

p i

i d i d p i p

kk T s
T s

T s a kT T s b kk kk T s kk




     
(33) 

Using the normalization. 

1 3

n

p

T s
s s

kk 

 
   

 

    (34) 

 
Which means the response of the system will be faster than 
the normalized response by a factor of  , results in the 

standard closed loop transfer function. 

1
11 3 2

2 1

1
( )

1

n
n

n n n

c s
T s

s d s d s




  
   (35) 

Where, 

1

2

1 2

( )

( )

i

d

d p

c T

a kT
d

b kk kk
d












 


    (36) 

Here   can be selected by choice of pk and 1c  by the choice 

of iT . Based on the value of 1c , the coefficient 2d  and 1d  can 

be found from fig3. now we can calculate the values of dT  

and dk from (36) 

Remarks:  An experienced engineer can use the above given 
guidelines to determine the four tuning parameters of the PI-
PD controller and also there are four tuning parameters of 
the PI-PD controller, it requires more effort to obtain 
suitable tuning parameters 
 

 
 

Fig. 3. Optimum values of 1d and 2d for varying 

1c values 

 

6. Results 
 
In this section various examples are presented to 

illustrating the proposed robust PI/PID controller design 
method. 
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Example 1 

Consider a first order time delay system; 
5

1

( 1)s 
. The 

model used for the designing PI controller is  

2.93

1 2.73

se

s




. 

Now the proposed tuning method gives the following PI/PID 

controllers parameters ( 0.7)  . 

 

: 0.6196, 0.1983

: 0.9665, 0.2704, 0.8463

p i

p i d

PI k k

PID k k k

 

  
 

 
For comparison, results are presented for the PI controller 
by Ziegler-Nichols method [8,9] control parameters are 

: 0.83856, 0.1023p iZ N k k   . And also Gain and Phase 

Margin method, control parameters are  
 

( 3, 60)m mA   . : 0.4878, 0.1787p iGPM PI k k    

 
Simulation results: 
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Fig. 4. Unit step response and load-disturbance response 
of Numerical PI, Numerical PID, GPM-PI, and Ziegler-

Nichols controller. 
 

Comparison results shown in Fig. 4. For unit step 
response and load-disturbance response, respectively. It 
observed that the performance of Numerical PI/PID 
controller method is better than that of Z-N method, and 
GPM-PI method  
 

6.1. Kharitonov Rectangular theorem for robust 
analysis 
 

We know that for the robustness analysis of control 
systems with parametric uncertainty kharitonov theorem 
and related approaches can be used  

 
Let us consider Example 2 of this paper. Here two 

cases will be considered in order to compare how the 
robustness of the closed-loop system is affected by the 
choice of PI controller gain 

pK . From (32) the closed loop 

characteristic equation of proposed control structure. 
 

 1 2( ) 1 ( ) ( ) ( ) 0ms G s K s K s       (37) 

 
Table: 1 

 
Criterion c1 d2 d1 Kp Ti K d Td 

Case 1 
ISE 

0.84 1.170 2.224 0.26 1.50 −0.572 −1.353 
ISTE 
IST2E 

0.84 
0.84 

1.730 
2.087 

2.250 
2.365 

0.26 
0.26 

1.50 
1.50 

−0.564 
−0.528 

−1.044 
−0.847 

Case 2 
ISE 

1.04 1.234 2.332 0.50 1.50 −0.379 −1.145 
ISTE 
IST2E 

1.04 
1.04 

1.816 
2.175 

2.351 
2.462 

0.50 
0.50 

1.50 
1.50 

−0.370 
−0.316 

−0.741 
−0.492 

 
Initially consider case 1. From Table 1, note that the 

controllers correspond to the 2IST E  criterion. we can 

write
1( ) 0.26(1 1 1.5 )K s s  and

2 ( ) 0.528 0.847K s s    

Substitute these in (37). Now the closed loop characteristic 
equation is given as 
 

3 2( ) 1.5 (1.5 1.27 ) (1.5 0.402 ) 0.26s s a k s b k s k       =0 

      (38) 
 
Nominal values of system transfer function from example 2. 
k=1, a=2, b=1. It is assumed that [0.9,1.1], [1.6,2.4]k a   

and [0.7,1.3]b . Therefore, the following interval 

characteristic polynomial can be obtained as 
 

3 2( ) 1.5 (1,2.457) (0.61,1.59) (0.234,0.249) 0s s s s       

      (39) 
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Now the four Kharitonov polynomial are found to be 
 

2 3

1

2 3

2

2 3

3

2 3

4

( ) 0.234 0.61 2.457 1.50

( ) 0.234 1.59 2.457 1.50

( ) 0.249 0.61 1.00 1.50

( ) 0.249 1.59 1.00 1.50

K s s s s

K s s s s

K s s s s

K s s s s

   

   

   

   

 (40) 

 
Similarly, now consider case 2. 
 
 Where, 
 
 

1( ) 0.50(1 1 1.5 )K s s  ,
2 ( ) 0.316 0.492K s s    

 
 Substitute these in (37). Now the closed loop characteristic 
equation is given as, 
 

3 2( ) 1.5 (1.5 0.738 ) (1.5 0.7026 ) 0.50s s a k s b k s k        

      (41) 
 
And the following interval characteristic polynomial can be 
obtained as, 
 

3 2( ) 1.5 (1.588,2.936) (1.30,2.254) (0.45,0.55) 0s s s s       

      (42) 
 
Now the four Kharitonov polynomial are found to be 
 

2 3

1

2 3

2

2 3

3

2 3

4

( ) 0.45 1.30 2.936 1.50

( ) 0.45 2.254 2.936 1.50

( ) 0.55 1.30 1.588 1.50

( ) 0.55 2.254 1.588 1.50

K s s s s

K s s s s

K s s s s

K s s s s

   

   

   

   

 (43) 

 
Roots of Kharitonov polynomials for both cases are in 

negative real parts and hence satisfy Hurwitz condition. And 
Kharitonov rectangles of the closed loop system are given in 
Fig.4 and 5 for case 1 and case 2, respectively. It can be seen 
that the Kharitonov rectangles do not include the origin. 
Therefore, from zero exclusion principle one can say that the 
interval characteristic equations for both cases are stable. 
Thus, designed controllers for two cases are robust.  
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Fig. 5. Kharitonov Rectangle for case 1 
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Fig. 6. Kharitonov Rectangle for case 2 
 
From Fig.5 and 6 it can be seen that the value set for the first 
case is closer to origin then the second case. Then it is 
concluded that the controller design for second case is more 
robust than the first case. 

 
Example 2 

Consider a non-minimum phase zero model; 
3

1

( 1)

s

s




. The 

model used for the designing PID controller is 

1.58

2( 1)

se

s




. Now 

the proposed tuning method gives the following PI/PID 

controllers parameters ( 0.75)  . 
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: 0.7983, 0.3514, 0.4497p i dPID k k k   . For comparison, 

results are presented for the PID controller by Gain and 
Phase Margin method, control parameters are 
( 3, 60)m mA   : 0.7983, 0.3514, 0.4497p i dPID k k k   . 

And also, PI-PD control parameters are, 

: 0.50, 0.18703, 1.6966p i dPI PD k k k    . 

 
Simulation results: 
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Fig. 7. Unit step response and load-disturbance response 
of Numerical PID, GPM-PID, and PI-PD controller 

 
Comparison results shown in Fig. 7. For unit step 

response and load-disturbance response, respectively. It 
observed that the performance of Numerical PID controller 
method is superior than that of GPM-PID method and PI-PD 
controller method. 
 

7. Conclusion 
 
 This paper deals with a simple robust PI/PID controller 

design method developed using numerical optimization 
approach for time delay systems. And also, different 
examples and simulation results demonstrated the 
effectiveness of the proposed approach when compared with 
GPM, Ziegler-Nichols, and PI-PD controller methods. 
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