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Abstract – The major rate of data-driven in success  of 
finding solutions to different problems, The amount of data 
with dropping costs and processing that has led in large 
scale machine. The work on this project on a study of 
Twitter’s integration tools with that on a tool into an 
existing Hadoop based Pig-centric platform. The main role 
on this platform handles business intelligence task and data 
warehousing. The core of this work exist in mainly recent 
extensions of Pig in provide predictive analytics capabilities 
that incorporate machine learning, specifically focused on 
super-vised classification. Thus on a scale it has identified 
technique of a stochastic gradient for learning online and 
highly amenable for scaling out large amount of data. The 
machine learning enables success in an sample of a data on 
an training and testing which achieves directly in Pig, 
because an crafted loaders and storage function can Pig 
script it integration. With an existing infrastructure, 
screening out of a production environment will become 
libraries for script in material output.  
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1. INTRODUCTION 
 

Hadoop, the open-source implementation of Map Reduce 
[15], has emerged as a popular framework for large-scale 
data processing. Among its advantages are the ability to 
horizontally scale to petabytes of data on thousands of 
commodity servers, easy-to-understand programming. 
With high degree of fault tolerance. Although originally 
designed for applications such as text analysis, web 
indexing, and graph processing, Hadoop can be applied to 
manage structured data as well as \dirty" semi structured 
datasets with inconsistent schema, missing ends, and 
invalid values. More schematically the termed predictive 
analysis on fundamental contribution in a case study can 
experience a generalized organisation that exploit a new 
breed of engineers known as data scientists. 

 
Today, Hadoop enjoys widespread adoption in 
organizations ranging from two-person start-ups to 
Fortune 500 companies. It lies at the core of a software 
stack for large-scale analytics, and owes a large part of its 
success to a vibrant ecosystem. For example, Pig [37] and 
Hive [47] provide higher-level languages for data analysis: 
a data ow language called Pig Latin and a dialect of SQL, 

respectively. H-Base the open source implements of 
Google’s Big-Table [13], provides a convenient data model. 

 
1.1 Descriptive Statistics 

 
      The value of a Hadoop-based stack for \traditional" 
data warehousing and business intelligence tasks has 
already been demonstrated by organizations such as 
Facebook, LinkedIn, and Twitter (e.g., [22, 41]). This value 
proposition also lies at the centre of a growing list of start-
ups and large companies that have entered the \big data" 
game. Common tasks include ETL, joining multiple 
disparate data sources, followed by altering, aggregation, 
or cube materialization. Statisticians might use the phrase 
descriptive statistics to describe this type of analysis. 
These outputs might feed report generators, frontend 
dashboards, and other visualization tools to support 
common \roll up" and \drill down" operations on multi-
dimensional data. Hadoop-based plat-forms have also been 
successful in supporting ad hoc queries by a new breed of 
engineers known as \data scientists”. The success of the 
Hadoop platform drives infrastructure developers to build 
increasingly powerful tools, which data scientists and 
other engineers can exploit to extract insights from 
massive amounts of data. In particular, we focus on 
machine learning techniques that enable what might be 
best termed predictive analytics. We readily acknowledge 
that this paper does not present any fundamental 
contributions to machine learning. Rather, we focus on 
end-to-end machine learning workflows and integration 
issues in a production environment. Although specifically a 
case study, we believe that these experiences can be 
generalized to other organizations and contexts, and 
therefore are valuable to the community. 
 

2. BACKGROUND AND RELATED WORK 
 

We begin with a brief overview of machine  learning. Let 
X be the input space and Y be the output space. Given set of 
training samples D = f(x1;   y1); (x2; y2):::(xn; yn)g from the 
space X Y (called labelled examples or instances), the 
supervised machine learning task is to induce a function f : 
X ! Y that best explains the training data. The notion of 
\best" is usually captured in terms of minimizing \loss", 
via a function L which quantities the discrepancy between 
the functional prediction f(xi) and the actual output yi, for 
details, we refer the reader to standard textbooks. There 
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are three main components of a machine learning solution: 
the data, features extracted from the data, and the model. 
Accumulated experience over the last decade has shown 
that in real-world settings, the size of the dataset is the 
most important factor. Studies have repeatedly shown that 
simple models trained over enormous quantities of data 
outperform more sophisticated models trained on less 
data. Labelled training examples derive from many 
sources. Human annotators can be paid to manually label 
examples, and with the advent of crowdsourcing the cost 
can be quite reasonable [45]. However, the amount of 
training data that can be manually generated pales in 
comparison to the amount of data that can be extracted 
automatically from logs and other sources in an 
organization's data warehouse. As a simple example, query 
and interaction logs from commercial search engines can 
be distilled into relevance judgments [24]. These data tend 
to be noisy, but modern \learning to rank" [27] algorithms 
are resilient (by design) to noisy data. By mining log data, 
an organization can generate practically limitless amounts 
of training data for certain tasks. 
          Despite growing interest in large-scale learning, there 
are relatively few published studies on machine learning 
works and how such tools integrate with data 
management platforms: Scullery et al. [42] describe 
Google's e orts for detecting adversarial advertisements. 
Cohen et al. [14] advocate the integration of predictive 
analytics into traditional RDBMSes. Labelled training 
examples derive from many sources. Human annotators 
can be paid to manually label examples, and with the 
advent of crowdsourcing the cost can be quite reasonable 
[45]. However, the amount of training data that can be 
manually generated pales in comparison to the amount of 
data that can be extracted automatically from logs and 
other sources in an organization's data warehouse. 
Despite growing interest in large-scale learning, there are 
relatively few published studies on machine learning 
work- flows and how such tools integrate with data 
management. 

 

3. TWITTER’S ANALYTICS STACK 
 

A large Hadoop cluster lies at the core of our analytics 
infrastructure, which serves the entire company. Data is 
written to the Hadoop Distributed File System (HDFS) via 
a number of real-time and batch processes, in a variety of 
formats. These data can be bulk exports from databases, 
application logs, and many other sources. When the 
contents of a record are well they are serialized using 
either Protocol Bu ers3 or Thrift.4 Ingested data are LZO-
compressed, which provides a good trade between 
compression ratio and speed. 
 

    In a Hadoop job, different record types produce different 
types of input key-value pairs for the mappers, each of 
which requires custom code for deserializing and parsing. 
Since this code is both regular and repetitive, it is 
straightforward to use the serialization framework to 
specify the data schema, from which the serialization 
compiler generates code to read, write, and manipulate the 
data. This is handled by our sys-tem called Elephant Bird,5 
which automatically generates Hadoop record readers and 
writers for arbitrary Protocol Buffer and Thrift messages. 
 

4. EXTENDING PIG 
 

The previous section describes a mature, production 
system that has been running successfully for several 
years and is critical to many aspects of business 
operations. In this section, we detail Pig extensions that 
augment this data analytics platform with machine 
learning capabilities. 

 
4.1   DEVELOPMENT HISTORY 

 
To better appreciate the solution that we have developed, 
it is perhaps helpful to describe the development history. 
Twitter has been using machine learning since its earliest 
days. Surmise, a two year old startup that Twitter acquired 
primarily for its search product in 2008, had as part of its 
technology portfolio sentiment analysis capabilities based 
in part on machine learning. After the acquisition, machine 
learning contributed to spam detection and other 
applications within Twitter. These activities predated the 
existence of Hadoop and what one might recognize as a 
modern data analytics platform. Typically, data 
manipulation in Pig is followed by invocation of the 
machine learning tool (via the command line or an API 
call), followed perhaps by more data manipulation in Pig. 
During development, these context switches were 
tolerable (but undoubtedly added friction to the 
development process). In production, however, these same 
issues translated into brittle pipelines. It is common to 
periodically update models and apply classifiers to new 
data, while respecting data dependencies. 
 

      There are many issues with this work ow, the foremost 
of which is that down sampling largely defeats the point of 
working with large data in the rest place. Beyond the issue 
of scalability, using existing machine learning tools 
created. Typically, data manipulation in Pig is followed by 
invocation of the machine learning tool (via the command 
line or an API call), followed perhaps by more data 
manipulation in Pig. During development, these con-text 
switches were tolerable (but undoubtedly added friction to 
the development process). In production, however, these 
same issues translated into brittle pipelines. 
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4.2 CORE LIBRARIES 
 

Our machine learning framework consists of two 
components: a core Java library and a layer of lightweight 
wrappers that expose functionalities in Pig. The core 
library is worth a passing description, but is not terribly 
interesting or innovative. It contains basic abstractions 
similar to what one might and in Weka, Mallet, Mahout, 
and other existing packages. We have a representation for 
a feature vector, essentially a mapping from strings to 
floating point feature values, mediated by integer feature 
ids for representational compactness. A classifier is an 
object that implements a classify method, which takes as 
input a feature vector and outputs a classification object 
(encapsulating a distribution over target labels). There are 
two different interfaces for training classifiers: Batch 
trainers implement a builder pattern and expose a train 
method that takes a collection of (label, feature vector) 
pairs and returns a trained classifier. Online learners are 
simply classifiers that expose an update method, which 
processes individual (label, feature vector) pairs. Finally, 
all classifiers have the ability to serialize their models to, 
and to load trained models from abstract data streams 
(which can be connected to local les, HDFS les, etc.). 
 

Our core Java library contains a mix of internally built 
classifiers and trainers (for logistic regression, decision 
trees, etc.), as well as adaptor code that allows us to take 
advantage of third-party packages via a unified interface. 
All of these abstractions and functionalities are fairly 
standard and should not come as a surprise to the reader. 
 
Our machine learning algorithms can be divided into two 
classes: batch learners and online learners. Batch learners 
require all data to be held in memory, and therefore the 
Pig storage functions wrapping such learners must first 
internally buffer all training instances before training. This 
presents a scalability bottleneck, as Hadoop reduce tasks 
are typically allocated only a modest amount of memory. 
Online learners, on the other hand, have no such 
restriction: the Pig storage function simply streams 
through incoming instances. 

 
4.3 TRAINING MODELS 

 

For model training, our core Java library is integrated 
into Pig as follows: feature vectors in Java are exposed as 
maps in Pig, which we treat as a set of feature id (int) to 
feature value (float) mappings. Thus, a training instance in 
Pig has the following schema: 

 
One of the primary challenges we had to overcome to 

enable Pig-based machine learning was the mismatch be-
tween typical Pig data flows and data flows in training ma-

chine learning models. In typical Pig scripts, data ow from 
sources (HDFS les, HBase rows, etc.), through 
transformations (joins, alters, aggregations, etc.), and are 
written to sinks (other HDFS les, another HBase table, 
etc.). In this data ow, UDFs might read \side data", for 
example, loading up dictionaries. When training a 
classifier, the input data consist of (label, feature vector) 
pairs and the output is the trained model. The model is not 
a \transformation" of the original data in the conventional 
sense, and is actually closer (both in terms of size and 
usage patterns) to \side data" needed by UDFs. 

 
 

      Pig dataflow        Pig dataflow 
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Figure 1: Illustration of how learners are integrated into 
Pig storage functions. By controlling the number of 
reducers in the final Map Reduce job, we can control the 
number of models constructed: on the left, a single 
classifier, and on the right, a two-classifier ensemble. 
 
In short, the parallelization provided by running multiple 
reducers corresponds naturally to training ensembles of 
classifiers, and using this mechanism, we can arbitrarily 
scale out (overcoming the bottleneck of having to training 
data onto a single machine). As is often the case for many 
machine learning problems, and confirmed in our 
experiments (see Section 6), an ensemble of classifiers 
trained on partitions of a large dataset outperforms a 
single classifier trained on the entire dataset (more 
precisely, lowers the variance component in error). We 
have thus far not explicitly addressed feature generation, 
because it is largely dependent on the problem domain 
and requires the creativity of the engineer to be able to cull 
the relevant signals from vast quantities of data. However, 
we describe a sample application in Section 6 to give the 
reader a feel for the complete process. 

 
5. SCALABLE MACHINE LEARNING 
 
The head of machine learning is incredibly rich and 
diverse, but from the vast literature, we have identified 
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two classes of techniques that are particularly amenable to 
large-scale machine learning. The rest is stochastic 
gradient descent, representative of online learners that can 
easily scale to large datasets. The second is ensemble 
methods, which allow us to parallelize training in an nearly 
embarrassingly parallel manner, yet retain high levels of 
effectiveness. Both are well known in the machine learning 
literature, and together they form a powerful combination. 
These techniques occupy the focus of our implementation 
efforts. 

 
6. SENTIMENT ANALYSIS APPLICATION 
 

In this section, we present an application of our machine 
learning tools to the problem of sentiment analysis. 
Although the problem is intrinsically interesting, our 
discussion primarily exists to illustrate the various 
features of our machine learning framework and show 
how all the pieces \come together". 

 
6.1 METHODOLOGY 
 

Sentiment analysis, and more broadly, opinion mining, is 
an area of natural language processing that has received 
significant interest in recent years; Pang and Lee provide a 
nice overview [40]. These technologies have also seen 
widespread commercial interest, particularly as applied to 
social media: sentiment analysis and related technologies 
promise solutions to brand and customer relations 
management, as well as insights into consumer behaviour 
in the marketplace. Sentiment analysis applied to tweets 
has naturally received attention [38, 36, 25]. In contrast to 
previous approaches, which use some form of linguistic 
processing, we adopt a knowledge-poor, data-driven 
approach. It provides a base-line for classification 
accuracy from content, given only large amounts of data. 

 
More specifically, we tackle the binary polarity 

classification task. That is, given a tweet known in advance 
to express some sentiment, the classifier's task is to 
predict yi 2f Negative; Positive g. To generate labelled 
training data for polarity classification, we use the well-
known \emoticon trick". That is, we simply assume that 
tweets with positive emoticons, e.g., :-) and variants, are 
positive training instances, and tweets with negative 
emoticons, e.g., :-( and variants, are negative training 
instances. Obviously, these assumptions are not 
completely valid and do not capture phenomena such as 
sarcasm, irony, humour, etc., but, overall, data gathered in 
this manner are quite reasonable.  

 
The illustrative purposes, the \emoticon trick" is typical 

of a mechanism for generating a large number of labelled, 
albeit noisy, training examples. We have a representation 

for a feature vector, essentially a mapping from strings to 
floating point feature values, mediated by integer feature 
ids for representational compactness. A classifier is an 
object that implements a classify method, which takes as 
input a feature vector and outputs a classification object 
(encapsulating a distribution over target labels). There are 
two different interfaces for training classifiers: Batch 
trainers implement a builder pattern and expose a train 
method that takes a collection of (label, feature vector) 
pairs and returns a trained classifier. Online learners are 
simply classifiers that expose an update method, which 
processes individual (label, feature vector) pairs. 

 
7. CONCLUSIONS 

 
As the cost of storage and processing continues to drop, 
organizations will accumulate increasing amounts of data 
from which to derive insights. Inevitably, the 
sophistication of analyses will increase over time. Business 
intelligence tasks such as cubing to support \roll up" and 
\drill down" of multi-dimension data are already 
commonplace, with mature best practices both in the 
context of traditional data warehouses and Hadoop-based 
stacks. We are, however, witnessing the transition from 
simple descriptive analytics to more powerful predictive 
analytics, which promises to unlock greater troves of 
insights. There has not yet emerged a consensus on 
architectures and best practices for these types of 
activities. Nevertheless, we hope that through the 
accumulation of experiences, the community will converge 
on a body of shared knowledge. We hope that our 
experiences in integrating ma-chine learning tools in a Pig-
centric analytics environment contribute to this end goal. 
In addition to training models, many other types of data. 
The manipulations common in machine learning can be 
straight- forwardly accomplished in Pig. For example, it is 
often desirable to randomly shuffle the labelled instances 
prior to training, especially in the case of online learners, 
where the learned model is dependent on the ordering of 
the examples. This can be accomplished by generating 
random numbers for each training instance. Using our 
machine learning framework is mostly a matter of learning 
a few Pig idioms; the rest feels just like typical analysis 
tasks. Put it another way: machine learning becomes a 
natural extension of data science, where insights gleaned 
from data are operationalized in computational models. 
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