
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 10 | Oct -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 247

The Study of the Large Scale Twitter on Machine Learning

ABHISH IJARI

Dept of Information Science and Engineering, KLEIT, Hubballi, Karnataka, India
--***---

Abstract – The major rate of data-driven in success of
finding solutions to different problems, The amount of data
with dropping costs and processing that has led in large
scale machine. The work on this project on a study of
Twitter’s integration tools with that on a tool into an
existing Hadoop based Pig-centric platform. The main role
on this platform handles business intelligence task and data
warehousing. The core of this work exist in mainly recent
extensions of Pig in provide predictive analytics capabilities
that incorporate machine learning, specifically focused on
super-vised classification. Thus on a scale it has identified
technique of a stochastic gradient for learning online and
highly amenable for scaling out large amount of data. The
machine learning enables success in an sample of a data on
an training and testing which achieves directly in Pig,
because an crafted loaders and storage function can Pig
script it integration. With an existing infrastructure,
screening out of a production environment will become
libraries for script in material output.

Key Words: stochastic gradient descent, online
learning, ensembles, logistic regression

1. INTRODUCTION

Hadoop, the open-source implementation of Map Reduce
[15], has emerged as a popular framework for large-scale
data processing. Among its advantages are the ability to
horizontally scale to petabytes of data on thousands of
commodity servers, easy-to-understand programming.
With high degree of fault tolerance. Although originally
designed for applications such as text analysis, web
indexing, and graph processing, Hadoop can be applied to
manage structured data as well as \dirty" semi structured
datasets with inconsistent schema, missing ends, and
invalid values. More schematically the termed predictive
analysis on fundamental contribution in a case study can
experience a generalized organisation that exploit a new
breed of engineers known as data scientists.

Today, Hadoop enjoys widespread adoption in
organizations ranging from two-person start-ups to
Fortune 500 companies. It lies at the core of a software
stack for large-scale analytics, and owes a large part of its
success to a vibrant ecosystem. For example, Pig [37] and
Hive [47] provide higher-level languages for data analysis:
a data ow language called Pig Latin and a dialect of SQL,

respectively. H-Base the open source implements of
Google’s Big-Table [13], provides a convenient data model.

1.1 Descriptive Statistics

 The value of a Hadoop-based stack for \traditional"
data warehousing and business intelligence tasks has
already been demonstrated by organizations such as
Facebook, LinkedIn, and Twitter (e.g., [22, 41]). This value
proposition also lies at the centre of a growing list of start-
ups and large companies that have entered the \big data"
game. Common tasks include ETL, joining multiple
disparate data sources, followed by altering, aggregation,
or cube materialization. Statisticians might use the phrase
descriptive statistics to describe this type of analysis.
These outputs might feed report generators, frontend
dashboards, and other visualization tools to support
common \roll up" and \drill down" operations on multi-
dimensional data. Hadoop-based plat-forms have also been
successful in supporting ad hoc queries by a new breed of
engineers known as \data scientists”. The success of the
Hadoop platform drives infrastructure developers to build
increasingly powerful tools, which data scientists and
other engineers can exploit to extract insights from
massive amounts of data. In particular, we focus on
machine learning techniques that enable what might be
best termed predictive analytics. We readily acknowledge
that this paper does not present any fundamental
contributions to machine learning. Rather, we focus on
end-to-end machine learning workflows and integration
issues in a production environment. Although specifically a
case study, we believe that these experiences can be
generalized to other organizations and contexts, and
therefore are valuable to the community.

2. BACKGROUND AND RELATED WORK

We begin with a brief overview of machine learning. Let
X be the input space and Y be the output space. Given set of
training samples D = f(x1; y1); (x2; y2):::(xn; yn)g from the
space X Y (called labelled examples or instances), the
supervised machine learning task is to induce a function f :
X ! Y that best explains the training data. The notion of
\best" is usually captured in terms of minimizing \loss",
via a function L which quantities the discrepancy between
the functional prediction f(xi) and the actual output yi, for
details, we refer the reader to standard textbooks. There

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 10 | Oct -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 248

are three main components of a machine learning solution:
the data, features extracted from the data, and the model.
Accumulated experience over the last decade has shown
that in real-world settings, the size of the dataset is the
most important factor. Studies have repeatedly shown that
simple models trained over enormous quantities of data
outperform more sophisticated models trained on less
data. Labelled training examples derive from many
sources. Human annotators can be paid to manually label
examples, and with the advent of crowdsourcing the cost
can be quite reasonable [45]. However, the amount of
training data that can be manually generated pales in
comparison to the amount of data that can be extracted
automatically from logs and other sources in an
organization's data warehouse. As a simple example, query
and interaction logs from commercial search engines can
be distilled into relevance judgments [24]. These data tend
to be noisy, but modern \learning to rank" [27] algorithms
are resilient (by design) to noisy data. By mining log data,
an organization can generate practically limitless amounts
of training data for certain tasks.
 Despite growing interest in large-scale learning, there
are relatively few published studies on machine learning
works and how such tools integrate with data
management platforms: Scullery et al. [42] describe
Google's e orts for detecting adversarial advertisements.
Cohen et al. [14] advocate the integration of predictive
analytics into traditional RDBMSes. Labelled training
examples derive from many sources. Human annotators
can be paid to manually label examples, and with the
advent of crowdsourcing the cost can be quite reasonable
[45]. However, the amount of training data that can be
manually generated pales in comparison to the amount of
data that can be extracted automatically from logs and
other sources in an organization's data warehouse.
Despite growing interest in large-scale learning, there are
relatively few published studies on machine learning
work- flows and how such tools integrate with data
management.

3. TWITTER’S ANALYTICS STACK

A large Hadoop cluster lies at the core of our analytics
infrastructure, which serves the entire company. Data is
written to the Hadoop Distributed File System (HDFS) via
a number of real-time and batch processes, in a variety of
formats. These data can be bulk exports from databases,
application logs, and many other sources. When the
contents of a record are well they are serialized using
either Protocol Bu ers3 or Thrift.4 Ingested data are LZO-
compressed, which provides a good trade between
compression ratio and speed.

 In a Hadoop job, different record types produce different
types of input key-value pairs for the mappers, each of
which requires custom code for deserializing and parsing.
Since this code is both regular and repetitive, it is
straightforward to use the serialization framework to
specify the data schema, from which the serialization
compiler generates code to read, write, and manipulate the
data. This is handled by our sys-tem called Elephant Bird,5
which automatically generates Hadoop record readers and
writers for arbitrary Protocol Buffer and Thrift messages.

4. EXTENDING PIG

The previous section describes a mature, production
system that has been running successfully for several
years and is critical to many aspects of business
operations. In this section, we detail Pig extensions that
augment this data analytics platform with machine
learning capabilities.

4.1 DEVELOPMENT HISTORY

To better appreciate the solution that we have developed,
it is perhaps helpful to describe the development history.
Twitter has been using machine learning since its earliest
days. Surmise, a two year old startup that Twitter acquired
primarily for its search product in 2008, had as part of its
technology portfolio sentiment analysis capabilities based
in part on machine learning. After the acquisition, machine
learning contributed to spam detection and other
applications within Twitter. These activities predated the
existence of Hadoop and what one might recognize as a
modern data analytics platform. Typically, data
manipulation in Pig is followed by invocation of the
machine learning tool (via the command line or an API
call), followed perhaps by more data manipulation in Pig.
During development, these context switches were
tolerable (but undoubtedly added friction to the
development process). In production, however, these same
issues translated into brittle pipelines. It is common to
periodically update models and apply classifiers to new
data, while respecting data dependencies.

 There are many issues with this work ow, the foremost
of which is that down sampling largely defeats the point of
working with large data in the rest place. Beyond the issue
of scalability, using existing machine learning tools
created. Typically, data manipulation in Pig is followed by
invocation of the machine learning tool (via the command
line or an API call), followed perhaps by more data
manipulation in Pig. During development, these con-text
switches were tolerable (but undoubtedly added friction to
the development process). In production, however, these
same issues translated into brittle pipelines.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 10 | Oct -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 249

4.2 CORE LIBRARIES

Our machine learning framework consists of two
components: a core Java library and a layer of lightweight
wrappers that expose functionalities in Pig. The core
library is worth a passing description, but is not terribly
interesting or innovative. It contains basic abstractions
similar to what one might and in Weka, Mallet, Mahout,
and other existing packages. We have a representation for
a feature vector, essentially a mapping from strings to
floating point feature values, mediated by integer feature
ids for representational compactness. A classifier is an
object that implements a classify method, which takes as
input a feature vector and outputs a classification object
(encapsulating a distribution over target labels). There are
two different interfaces for training classifiers: Batch
trainers implement a builder pattern and expose a train
method that takes a collection of (label, feature vector)
pairs and returns a trained classifier. Online learners are
simply classifiers that expose an update method, which
processes individual (label, feature vector) pairs. Finally,
all classifiers have the ability to serialize their models to,
and to load trained models from abstract data streams
(which can be connected to local les, HDFS les, etc.).

Our core Java library contains a mix of internally built
classifiers and trainers (for logistic regression, decision
trees, etc.), as well as adaptor code that allows us to take
advantage of third-party packages via a unified interface.
All of these abstractions and functionalities are fairly
standard and should not come as a surprise to the reader.

Our machine learning algorithms can be divided into two
classes: batch learners and online learners. Batch learners
require all data to be held in memory, and therefore the
Pig storage functions wrapping such learners must first
internally buffer all training instances before training. This
presents a scalability bottleneck, as Hadoop reduce tasks
are typically allocated only a modest amount of memory.
Online learners, on the other hand, have no such
restriction: the Pig storage function simply streams
through incoming instances.

4.3 TRAINING MODELS

For model training, our core Java library is integrated
into Pig as follows: feature vectors in Java are exposed as
maps in Pig, which we treat as a set of feature id (int) to
feature value (float) mappings. Thus, a training instance in
Pig has the following schema:

One of the primary challenges we had to overcome to

enable Pig-based machine learning was the mismatch be-
tween typical Pig data flows and data flows in training ma-

chine learning models. In typical Pig scripts, data ow from
sources (HDFS les, HBase rows, etc.), through
transformations (joins, alters, aggregations, etc.), and are
written to sinks (other HDFS les, another HBase table,
etc.). In this data ow, UDFs might read \side data", for
example, loading up dictionaries. When training a
classifier, the input data consist of (label, feature vector)
pairs and the output is the trained model. The model is not
a \transformation" of the original data in the conventional
sense, and is actually closer (both in terms of size and
usage patterns) to \side data" needed by UDFs.

 Pig dataflow Pig dataflow

map

reduce

Pig storage function

model model model

Figure 1: Illustration of how learners are integrated into
Pig storage functions. By controlling the number of
reducers in the final Map Reduce job, we can control the
number of models constructed: on the left, a single
classifier, and on the right, a two-classifier ensemble.

In short, the parallelization provided by running multiple
reducers corresponds naturally to training ensembles of
classifiers, and using this mechanism, we can arbitrarily
scale out (overcoming the bottleneck of having to training
data onto a single machine). As is often the case for many
machine learning problems, and confirmed in our
experiments (see Section 6), an ensemble of classifiers
trained on partitions of a large dataset outperforms a
single classifier trained on the entire dataset (more
precisely, lowers the variance component in error). We
have thus far not explicitly addressed feature generation,
because it is largely dependent on the problem domain
and requires the creativity of the engineer to be able to cull
the relevant signals from vast quantities of data. However,
we describe a sample application in Section 6 to give the
reader a feel for the complete process.

5. SCALABLE MACHINE LEARNING

The head of machine learning is incredibly rich and
diverse, but from the vast literature, we have identified

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 10 | Oct -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 250

two classes of techniques that are particularly amenable to
large-scale machine learning. The rest is stochastic
gradient descent, representative of online learners that can
easily scale to large datasets. The second is ensemble
methods, which allow us to parallelize training in an nearly
embarrassingly parallel manner, yet retain high levels of
effectiveness. Both are well known in the machine learning
literature, and together they form a powerful combination.
These techniques occupy the focus of our implementation
efforts.

6. SENTIMENT ANALYSIS APPLICATION

In this section, we present an application of our machine
learning tools to the problem of sentiment analysis.
Although the problem is intrinsically interesting, our
discussion primarily exists to illustrate the various
features of our machine learning framework and show
how all the pieces \come together".

6.1 METHODOLOGY

Sentiment analysis, and more broadly, opinion mining, is
an area of natural language processing that has received
significant interest in recent years; Pang and Lee provide a
nice overview [40]. These technologies have also seen
widespread commercial interest, particularly as applied to
social media: sentiment analysis and related technologies
promise solutions to brand and customer relations
management, as well as insights into consumer behaviour
in the marketplace. Sentiment analysis applied to tweets
has naturally received attention [38, 36, 25]. In contrast to
previous approaches, which use some form of linguistic
processing, we adopt a knowledge-poor, data-driven
approach. It provides a base-line for classification
accuracy from content, given only large amounts of data.

More specifically, we tackle the binary polarity

classification task. That is, given a tweet known in advance
to express some sentiment, the classifier's task is to
predict yi 2f Negative; Positive g. To generate labelled
training data for polarity classification, we use the well-
known \emoticon trick". That is, we simply assume that
tweets with positive emoticons, e.g., :-) and variants, are
positive training instances, and tweets with negative
emoticons, e.g., :-(and variants, are negative training
instances. Obviously, these assumptions are not
completely valid and do not capture phenomena such as
sarcasm, irony, humour, etc., but, overall, data gathered in
this manner are quite reasonable.

The illustrative purposes, the \emoticon trick" is typical

of a mechanism for generating a large number of labelled,
albeit noisy, training examples. We have a representation

for a feature vector, essentially a mapping from strings to
floating point feature values, mediated by integer feature
ids for representational compactness. A classifier is an
object that implements a classify method, which takes as
input a feature vector and outputs a classification object
(encapsulating a distribution over target labels). There are
two different interfaces for training classifiers: Batch
trainers implement a builder pattern and expose a train
method that takes a collection of (label, feature vector)
pairs and returns a trained classifier. Online learners are
simply classifiers that expose an update method, which
processes individual (label, feature vector) pairs.

7. CONCLUSIONS

As the cost of storage and processing continues to drop,
organizations will accumulate increasing amounts of data
from which to derive insights. Inevitably, the
sophistication of analyses will increase over time. Business
intelligence tasks such as cubing to support \roll up" and
\drill down" of multi-dimension data are already
commonplace, with mature best practices both in the
context of traditional data warehouses and Hadoop-based
stacks. We are, however, witnessing the transition from
simple descriptive analytics to more powerful predictive
analytics, which promises to unlock greater troves of
insights. There has not yet emerged a consensus on
architectures and best practices for these types of
activities. Nevertheless, we hope that through the
accumulation of experiences, the community will converge
on a body of shared knowledge. We hope that our
experiences in integrating ma-chine learning tools in a Pig-
centric analytics environment contribute to this end goal.
In addition to training models, many other types of data.
The manipulations common in machine learning can be
straight- forwardly accomplished in Pig. For example, it is
often desirable to randomly shuffle the labelled instances
prior to training, especially in the case of online learners,
where the learned model is dependent on the ordering of
the examples. This can be accomplished by generating
random numbers for each training instance. Using our
machine learning framework is mostly a matter of learning
a few Pig idioms; the rest feels just like typical analysis
tasks. Put it another way: machine learning becomes a
natural extension of data science, where insights gleaned
from data are operationalized in computational models.

ACKNOWLEDGEMENT

I would like to express thankful to Mr. Anand Mannikeri,
Assistant Professor KLEIT Hubballi for technical
suggestions and continuous support to complete this work.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 10 | Oct -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 251

REFERENCES

[1] K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz, and
E.Paulson. E cient processing of data warehousing quiries
in a split execution environment. SIGMOD, 2011.

[2] M. Banko and E. Brill. Scaling to very very large corpora
for natural language disambiguation. ACL, 2001.

[3] R. Bekkerman and M. Gavish. High-precision phrase-
based document classi cation on a modern scale. KDD,
2011.

