
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 10 | Oct -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1830

Hadoop Distributed FileSystem: Metadata Management

Piyush P Deshpande

YCCE, RTMNU Nagpur University,
Nagpur, Maharashtra 441110

--***--

Abstract - A Hadoop Distributed File System (HDFS) is
designed to store very large data sets reliably and to stream
those data sets at high bandwidth to user applications. The
present Hadoop relies on secondary namenode for failover
which slows down the performance of the system. Hadoop
system's scalability depends on the vertical scalability of
namenode server. As the namespace of Hadoop distributed file
system grows, it demands additional memory to cache.

Key Words: Hadoop, HDFS, Distributed File System,
Metadata Management, File Management System

1. INTRODUCTION

With the rapid development of Internet, the amount of data
is growing exponentially, and the large-scale data storage
and processing has become a problem. Cloud computing is
one of the most popular solutions to meet the demand. Cloud
computing provides decreased cost of hardware resource

and increased equipment utilization.

1.1 INTRODUCTION TO HADOOP

Hadoop provides a distributed file system and a framework
for the analysis and transformation of very large data sets
using the Map Reduce paradigm. An important characteristic
of Hadoop is the partitioning of data and computation across
many (thousands) of hosts.

Figure 1: Hadoop System

Table No 1: Components of Hadoop

The table 1 shows the components of Hadoop in general
which are widely used in Software Industries. Hadoop is an
Apache project; all components are available via the Apache
open source license.

1.2 HADOOP DISTRIBUTED FILE SYSTEM

The Hadoop Distributed File System (HDFS) [7] is a
distributed file system designed to run on commodity
hardware.

 Highly Fault-Tolerant
 Easily deployable on low-cost hardware
 High throughput access to application data.

Figure -2: HDFS Architecture

HDFS stores file system metadata and application data
separately. HDFS architecture consists of NameNode,
DataNode, and HDFS Client. A HDFS Cluster may consist of
thousands of DataNode and tens of thousands of HDFS clients

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 10 | Oct -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1831

per cluster, as each DataNode may execute multiple
application tasks concurrently. The above figure 2 shows the
Hadoop Distributed File System Architecture.

Current limitations of Hadoop File system:

I) Scalability: The entire file system metadata is managed
and maintained by NameNode in memory. Metadata has
space limited by the physical memory available on the node.
Some of the storage issues arise as follows:

 Scaling storage

 Scaling the namespace

 II) Isolation: No isolation for a multi‐tenant environment. An
experimental client application that puts high load on the
central name node can impact a production application.

III) Availability: While the design does not prevent building
a failover mechanism, when a failure occurs the entire
namespace and hence the entire cluster is down.

2) Metadata Management Techniques

To distribute metadata among multiple servers some
techniques are used like Sub-Tree Partitioning, Hashing
technique and Consistent Hashing

2.1) Subtree partioning- The Sub Tree Partitioning [4][6]
is used in Ceph file system and Coda file system. The key
design idea is that initially, the partition is performed by
hashing directories near the root of the hierarchy, and when
a server becomes heavily loaded, this busy server
automatically migrate some subdirectories to other servers
with fewer loads thus improving performance.

Fig -3: Sub-tree partitioning

 In sub tree partitioning, namespace is divided into
many directory sub trees, each of which is managed
by individual metadata servers.

 2.2) Hashing Technique-Hashing technique [10] is used
in Lustre, zFs file system. Hashing technique uses a hash
function on the path name to get metadata location. In this
scheme, metadata can be distributed uniformly among
cluster, but the directory locality feature is lost, and if the
path is renamed, some metadata have to migrate. Following
mapping approach can be witnessed in this technique

 Balance of metadata workloads

 Faster metadata lookup operations

2.3) Consistent Hashing: Consistent hashing [9] is
proposed hash method used in Amazon Dynamo. In basic
consistent hashing, the output range of the hash function is
treated as a ring. Pecularity of this technique are as follows:

 The addition and removal of a node only affects its

neighboring nodes and not the entire ecosystem.
 Instead of mapping a physical node to a single point

in the ring, each physical node is assigned to
multiple positions.

 Virtual node distributes workloads uniformly.

3) System Architecture and Design Issues

Hadoop System basic architecture involves four components:
Client, NameNodes, NameNode Manager and Database.
Client exposes interfaces to access metadata.
NameNode is responsible for managing metadata and
dealing with metadata request from Client.

Figure 4: Metadata Management System

The Directory metadata includes a hierarchical
namespaces and directory attributes.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 10 | Oct -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1832

3.1) Metadata Format

 Generally, a metadata is a tuple as below:

 Figure 5: Metadata Tuple

 GLOBAL_ID acts as the global unique identifier that

is invariable once the path is formed.

 USER_ID is the identifier of user that created the
path.

 PARENT_GLOBAL_ID is the GLOBAL_ID of the
parent directory of the path.

 OTHER_META saves other information, such as
permission, update time and last access time.

 BLOCK_PTR is the pointer to the file data blocks.

 The updated metadata in NameNode is persisted
into database periodically.

 NameNode Manager acts a router which routes for
Client to get the target NameNode.

3.2) Partitioning of Metadata

Consistent hashing ring is divided in equal size Q parts
and each part is called ”bucket”. Mapping path from
metadata to bucket is like consistent hashing ,first hash
USER_ID and PARENT_GLOBAL_ID of the path to yield
its position p. Going clockwise to find 1st bucket having
position larger than p.

3.3) Accessing Metadata

To organize namespace hierarchy they have adopt hash table.
The figure 6 shows the NameNode data structure. For
example we want to access to path /A/B/C/filename

 Client gets user_id and global_id of path as
Parent_Global_ID

 Computes the consistent hashing result

 Then client see the cached BLT to find out bucket_id and
NameNode I.

 Sends the request to NameNode I in form of <bucket_id,
user_id, parent_global_id, filename> then the NameNode I
see its bucket array by bucket_id.

Figure 6: NameNode Data Structure

In the paper [9] they have also proposed the solution to
metadata safety in memory. The solution is “Log
Replication”. As the metadata is periodically persisted into
database, they have got the newest metadata by applying the
latest log records on the last-persisted metadata in database.

4. CONCLUSION

We have seen the components and distribution of file system
in brief. As compared to other file system HDFS offers a
highly reliable and fault tolerable system. Owing to such
features of reliability and data failure recovery mechanisms,
Hadoop has taken over the other older data store systems
which have become obsolete. The main drawback of HDFS
was its single NameNode which handles all metadata
operations. In this the drawback is overcome by introducing
multiple NameNodes like a block chain cluster in the system.
To handle multiple metadata servers we have compared
three techniques Sub-Tree partitioning, hashing technique
and consistent hashing. The consistent hashing technique
uses a distributive approach of the metadata which is
efficient compared to other techniques.BLT provides an
effective metadata retrieval mechanism for Client to find the
target NameNode. Metadata availability under cluster failure
is guaranteed with Paxos algorithm of log replication. The
paper also discusses about the crucial point of NameNode
failure detection by heartbeat mechanism and also focuses
on failure handling which includes metadata recovery by
means of bucket-redistribution. In addition, system
performance benefits from metadata caching and
prefetching has also been discussed.

REFERENCES

[1] Kornack and P. Rakic, “Cell Proliferation without

Neurogenesis in Adult Primate Neocortex,” Science, vol.
294, Dec. 2001, pp. 2127-2130,
doi:10.1126/science.1065467.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 10 | Oct -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1833

[2] M. Young, The Technical Writer’s Handbook. Mill Valley,
CA: University Science, 1989.

[3] R. Nicole, “Title of paper with only first word
capitalized,” J. Name Stand. Abbrev., in press.

[4] K. Elissa, “Title of paper if known,” unpublished.

[5] Y.Zhu, H.Jiang, J.Wang, and F.Xian, "HBA: Distributed
Metadata Management for Large Cluster-Based Storage
Systems", IEEE Trans. Parallel and Distributed Systems,
June 2008, vol.19, no.6, pp.750- 763.

[6] S. A. Weil, S. A. Brandt, E. L. Mille, et ai, "Ceph: A Scalable,
High- Performance Distributed File System", In
Proceedings of the 7th symposium on Operating systems
design and implementation, 2006, pp. 307-320.

[7] http://hadoop.apache.org/docs/r0.20.0/hdfs_design.ht
ml

[8] Karger, D., Lehman, E., Leighton, T., Panigahy, R., Levine,
M. , and Lewin, D, "Consistent hashing and random trees:
distributed caching protocols for relieving hot spots on
the World Wide Web", In Proceedings of the Twenty-
Ninth Annual ACM Symposium on theory of Computing,
ACM Press, New York, 1997, pp. 654-663.

[9] Bing Li, Yutao He, Ke Xu, “Distributed Metadata
Management Scheme in Cloud Computing “, In
Proceedings of IEEE in PCN&CAD CENTER, Beijing
University of Post and Telecommunication, China, 2011.
Sage A. Weil, Kristal T. Pollack, Scott A. Brandt, Ethan
L.Miller ,”Dynamic Metadata Management for Petabyte-
scale File Systems “, In Proceedings of IEEE University of
California, 2004

[10] Harcharan Jit Singh V. P. Singh “High Scalability of
HDFS using Distributed Namespace” International
Journal of Computer Applications (0975 – 8887)
Volume 52– No.17, August 2012

http://hadoop.apache.org/docs/r0.20.0/hdfs_design.html
http://hadoop.apache.org/docs/r0.20.0/hdfs_design.html

