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Abstract - In this paper the controller design for non 
minimum phase systems are obtained by using magnitude 
optimum and multiple integration method and numerical 
optimization approach. There are many ways to design a 
proper controller for a specific system. This paper mainly 
focused on the optimization approach methods. In this paper 
non minimum phase systems are used for design controller. 
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1. INTRODUCTION 
 
     There have been great amount of research work on the 
tuning of PID controllers. In this paper, two approaches are 
given for the controller design of non minimum phase 
systems. PID controllers have been used for a long time. 
Taylor developed the first PID controller. But the problem is 
occurred in how to tune a PID controller. at that time Ziegler 
and Nichols discover the famous Ziegler and Nichols tuning 
rules. These rules are still widely used. This is why so many 
different tuning rules have been developed which are based 
on the same tuning procedure. by this way In this paper 
discussed about the controller design of the non minimum 
phase systems by using magnitude optimum and multiple 
integration and numerical optimization approach. Generally 
a non minimum phase system is meant by among all systems 
having the same magnitude plot, those with the least phase 
shift range are called minimum phase. Remaining are all non 
minimum phase. The transfer function of a MP system can be 
determined from the magnitude alone. systems having rhp 
zeros are non minimum phase. but they’re not the only ones. 
every rational transfer function has a high frequency 
magnitude asymptote with slope -20(n-m)dB/dec, where n 
is the number of poles and m is the no of zeros. every 
rational, minimum phase transfer function has high 
frequency phase asymptote at-90(n-m).use these facts to 
detect non minimum phase systems from their bode plot. if a 
transfer function has poles and /or zeros in the right half 
plane  then the system shows non minimum phase behavior. 
In this paper find the controller parameters of same non 
minimum phase system by using magnitude optimum and 

multiple integration and numerical optimization approaches 
by using their controller design process. 
 

2. MAGNITUDE OPTIMUM AND MULTIPLE 
INTEGRATION METHOD 

 
ROBUST CONTROLLER DESIGN: 
 
The problems with original MO tuning method just 
mentioned can be avoided by using the concept of 
‘moments’. This can be done by repetitive (multiple)      
integrating the input (u) this method is called magnitude 
optimum multiple integration (MOMI) tuning method  
Derivation of PID controller parameters: 
 
Assume that the rational transfer function of the actual 
process be: 
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Here Kpr denotes the process steady-state gain, and 1a  to 

na  and 
1b to 

mb  are the parameters (m n) of the process 

transfer function, and here delT  represents the process 

pure time delay. 
The following transfer function is describes the filtered PID 

controller:  
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Where U and E denotes the Laplace transform of controller 
output and the controller output, and the controller error 
(e=w-y), respectively. Here 

iK is represented as integral 

gain, K is represented as proportional gain,
d

K is 

represented as derivative gain and 
fT is called as filter time 

constant respectively. The filtered PID controller in a closed 
loop configuration with the process is shown in following 
figure. In this d denotes the load disturbance. From given 
Magnitude optimum method the PID controller parameters 
are derived by taking the open-loop transfer function has to 
given in a polynomial form. The expression (1) contains pure 
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time delay, by using Taylor series the time delay will 
transformed into polynomial form. 
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Fig. 1. The closed loop system with PID controller 
 
The open- loop system transfer function can be given as 
follows: 
 

1

2 3

0 1 2 3

2 3

0 2 3

....
( ) ( ) ;

....
c P

d d s d s d s
G s G s

c c s c s c s

   


   
  (3) 

 
Parameters 

ic  and 
id (i=1,2,…….) can be expressed as  

functions of the parameters in the transfer function(1),PID 
controller(2) parameters, and parameters of Taylor’s 
expansion:  
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Let us first assume that filter time constant (

fT ) is given. in 

order to determine three control parameters (
, ,i dK K K ),as 

required by the given magnitude optimum criterion, the first 

three equations( 0 2n   ) from the following set of 

equations(Hanus,1975)must hold: 
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To calculate the parameters , ,iK K and

dK  of the controller, 

the expression (4) into (6) then applying n=0,1,and2. Then 
the result occurred is 
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12 1, 2 5 , 2 5 ,( , ,...., , ,...., , ),
delpr fK f K a a a b b b T T   (8) 

13 1, 2 5 , 2 5 ,( , ,...., , ,...., , ).
deld pr fK f K a a a b b b T T  (9) 

 
Hanes (1975) was defined the necessary stability condition 
as 
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The above inequality verifies that the nyquist curve starts (at 

 =0) bellow the real axis ( mI < 0). 

 
The control parameters are depends on 12 process 
parameters from (7) to (9). The accurate estimation of the 
12 parameters from real measurements could be very 
problematic. To avoid this problem use the concept of 
repetitive integration technique. This concept is based on the 
measurement of areas which are calculated from the process 
open-loop step response. The areas 

iA  (i=0,1,….) can be 

expressed by integrating the process input (u(t) and the 
process output(y(t)) after applying the step change ∆U at the 
process input: 
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Integrals are defined as follows: 
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By using the expression (10) the all areas are coming 
Using the expression (10) it is possible to eliminate all the 12 
process parameters from (7)-(9).he controller parameters  
 

iK , ,K and
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Where 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 04 Issue: 10 | Oct -2017                     www.irjet.net                                                                 p-ISSN: 2395-0072 

 

© 2017, IRJET       |       Impact Factor value: 6.171       |       ISO 9001:2008 Certified Journal       |   Page 1476 
 
 

2 2

1 2 3 0 1 5 1 4 0 3

2 2

1 2 0 5 0 1 4 0 2 3

2 2 3 2

1 2 0 1 3 0 1 2 0 3

( )

( ) ( ).

f

f f

A A A A A A A A A A

T A A A A A A A A A A

T A A A A A T A A A A A

    

   

   

 (15) 

 
The above expression can be write as: 
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By using this expression controller parameters , ,i dK K andK  

are calculated. 
 

3. NUMERICAL OPTIMIZATION APPROACH 
 
Numerical optimization presents a comprehensive and up to 
date description of the most effective methods in 
continuous optimization it responds to the going inters in 
the optimization engineering. In this paper design the 
controller for a no minimum phase system using numerical 
optimization method. 
 
Due to its simplicity, robustness and wide ranges of 
applicability in the regulatory control layer, the (PID) 
controller is use widely. However, a very broad class is 
characterized by a periodic response. The commonly used 
category of industrial systems can be represented by a first-
order plus dead time model given as, 
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For the purpose of simplified analysis, this process model 
can only be used.. But the actual may have multiple lags, non-
minimum phase zero, etc. Similarly, another industrial 
process is characterized as non-a periodic response. This is 
represented by a second-order plus dead-time model given 
as, 
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Robust PI/PID Controller design 
 
Assume classical and very well known feedback control 
system show in figure, here G(s) represents the transfer 
function model and K(s) is the transfer function of standard 
PI/PID controller 
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Fig. 2. PID feedback control system 
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The transfer function of the closed loop system is 
respectively defined as Sensitivity Function S(s)  
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Where,      L S K s G S  is the open-loop transfer function, 

and Complementary sensitivity function C(S) 
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SECOND ORDER PID CONTROLLER DERIVATION 
 
The open loop transfer function of standard PID controller is 
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Now the open loop transfer function is given by  
 

02

0

2

1 0

(1 )(1 )
( )

( )

t s

p i d i

i

k k T s k T s P s e
L s

T s s a s a

  


 
 

Now the closed loop transfer function is given by
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Therefore, the polynomial characteristic equation f the 
closed loop system is given by 
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Which is in the form of
2 2

0 0( ) ( )( 2 )s s a s s       i.e. 
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By comparing (21) and (22) we get 
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The closed-loop stability impose a > 0 which is verified if 
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The above inequality is satisfied for 
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With b > 1. Taking into account the first constraint one can 

choose m   which gives 
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Therefore, the optimization problem is then written as 
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4. EXAMPLES. 
 
To show the effectiveness of these  PID controller design 
methods for non minimum phase systems are considered for 
simulation in MATLAB. 
 
Example 1: 
 
Case (a) : magnitude optimum and multiple integration 
method: 
 
Consider the second-order system  described using a 
transfer function 

1( )G s . The PID controller parameters are 

obtained using magnitude optimum multiple integration 
method the detailed step-by step computation procedure is 
given as below. 
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Here  in this problem areas which are obtained from the 

expression (10) is: 
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 By substituting these values of areas in expression (16) the 

parameters values are obtained as 
 

0.1186, 0.2114, 0.0826i p dK K K  

  
Case(b): 
  
Numerical optimization method: 

1 2

(1 3 )
( )

2 1

ss e
G S

s s




   
 

From the expressions (24)  in  The controller parameters 

are: 
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Fig.3. Time response of  with MOMI and NA controllers 
 
Example 2: 
 
Case (a): magnitude optimum and multiple integration 
method: 
 
Consider the second-order system  described using a 
transfer function 

2 ( )G s . The PID controller parameters are 

obtained using magnitude optimum multiple integration 
method the detailed step-by step computation procedure is 

given as below. 
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Here  in this problem areas which are obtained from the 

expression (10) is: 
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By substituting these values of areas in expression (16) the 

parameters values are obtained as 
0.8081, 1.6060, 0.7894i p dK K K  

  
Case (b):  
 

Numerical optimization method:
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From the expressions (24) The controller parameters are: 
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Fig.4. Time response with MOMI and NA 
controllers

  
Example 3: 
 
Case (a) : magnitude optimum and multiple integration 
method: 
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Here  in this problem areas which are obtained from the 

expression (10) is: 
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 By substituting these values of areas in expression (16) the 

parameters values are obtained as 
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Numerical optimization method: 
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From the expressions (24)  in  The controller parameters 
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Fig.5. Time response with MOMI and NA controllers 

 
CONCLUSION. 
 
This paper deals with the two approaches for controller 
design for PID controllers. Which are obtained by MOMI and 
Numerical optimization approaches. It is observed that 
MOMI method is giving accurate results when compared 
with Numerical optimization method. second order systems 
are considered for simulation in mat lab. 

 
REFERENCES 
 
(1) Vrančić, D. (2008). MOMI Tuning Method for Integral 
Processes. Proceedings of the 8Th Portuguese Conference on 
Automatic Control, Vila Real,   

 (2) Astrom, K. J., Panagopoulos, H. & Hagglund, T. (1998). 
Design of PI Controllers based on Non-Convex Optimization. 
Automatic, 34 (5), pp. 585-601. 

(3) Ba Hli, F. (1954). A General Method for Time Domain 
Network Synthesis. IRE Transactions– Circuit Theory, 1 (3), 
pp. 21-28. 

(4) Gorez, R. (1997). A survey of PID auto-tuning methods. 
Journal A. Vol. 38, No. 1, pp. 3-10. 

(5) Hanus, R. (1975). Determination of controllers 
parameters in the frequency domain. Journal A, XVI (3). 

(6) Huba, M. (2006). Constrained pole assignment control. 
Current Trends in Nonlinear Systems and Control, L. Menini, 
L. Zaccarian, Ch. T. Abdullah, Edts., Boston: Birkhauser, pp. 

163-183. 

(7) Kessler, C. (1955). Uber die Vorausberechnung optimal 
abgestimmter Regelkreise Teil III.Die optimale Einstellung 
des Reglers nachdemBetragsoptimum.Regelungstechnik, 
Jahrg. 3, pp. 40-49. 

(8) Preuss, H. P. (1991). Model-free PID-controller design by 
means of the method of gain optimum (in German). 
Automatisierungstechnik, Vol. 39, pp. 1522. 

(9) Rake, H. (1987). Identification: Transient- and frequency-
response methods. In M. G. Singh(Ed.), Systems & control 
encyclopedia; Theory, technology, applications. 
Oxford:Pergamon Press. 

(10) Strejc, V. (1960). Auswertung der dynamischen 
Eigenschaften von Regelstrecken bei gemessenen Ein- und 
Ausgangssignalen allgemeiner Art. Z. Messen, Steuern, 
Regeln, 3(1), pp. 7-10 

(11) Umland, J. W. & M. Safiuddin (1990). Magnitude and 
symmetric optimum criterion for the design of linear control 
systems: what is it and how does it compare with the others? 
IEEE Transactions on Industry Applications, 26 (3), pp. 489-
497. 

 

 


