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Abstract – In this survey paper, we consider the 
performance and optimization of cellular automaton 
algorithms that can approximate stochastic partial 
differential equations (SPDEs). We propose a central finite-
difference scheme for an SPDE that exhibits angular diffusive 
properties and a velocity constraint with a stochastic process 
satisfying the Markov property. We show, using a non-
Markovian Monte Carlo algorithm, that the probability 
distribution computed by the finite-difference method is 
moderately accurate. While performing this convergence 
analysis, we can establish a relationship between two 
variables that likely links back to a foundational finding of 
stochastic analysis, namely the dW2 = dt2 relationship 
between the Wiener process and time. Finally, we analyze 
previously published work that can benefit from our findings, 
and we discuss possible courses of actions that can be taken 
to advance this research even further. 
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1.INTRODUCTION  
 

In the modern age of information complexity, the use of 
stochastic processes to model random phenomena has 
significantly increased. With the increasing popularity of 
stochastic processes in various fields including quantum 
field theory, statistical mechanics, and stock market 
fluctuations, stochastic calculus has attracted much 
attention, especially in recent years. An example of such 
equations used to model such random processes are the 
stochastic Liouville-von Neumann equation, used to 
describe energy transfer dynamics, and the stochastic 
Navier-Stokes equations, used to describe hydrodynamic 
fluctuations. 

 
Einstein and Smoluchowski are prominent figures 

known for their foundational work on stochastic 
differential equations (SDEs) through their explanations of 
the kinetic theory of matter and Brownian motion. 
Stochastic partial differential equations (SPDEs) allow for 
the extension of the capabilities of SDEs to phenomena in 
greater dimensions. It has been discovered that even the 
most fundamental stochastic processes are mathematically 
complex; thus, they require their own rules for calculus. 

The most common interpretations of stochastic calculi 
have been generalized by Itô and Stratonovich. 

 
Due to the mathematically complex nature of stochastic 

processes, there are limited cases in which SPDEs can be 
solved analytically. Moreover, contemporary numerical 
algorithms are not optimal for deriving an exact form of 
their solutions either; so, we are compelled to seek an 
accurate and efficient method to better approximate these 
equations. A newly developing method to approximate the 
solution of SPDEs involves the use of cellular automata. The 
utilization of cellular automata allows one to represent the 
diffusion processes associated with SPDEs in a discretized 
n-dimensional mesh-based grid, like a dynamical system. 
The concept of cellular automaton was developed by 
Neumann and Ulmann in the 1940s. This topic developed 
throughout the 20th and 21st centuries through the 
popularization of various models, such as Conway’s Game 
of Life. In 2002, Wolfram published A New Kind of Science 
[2] in which he asserts that the use of cellular automaton 
has a multitude of applications. The work discussed in this 
paper is a continuation on this foundational work. 

 
The goal of this paper is to develop numerical 

approximation algorithms for solving SPDEs efficiently and 
accurately. This paper considers the development and 
optimization of novel cellular automaton numerical 
approximation methods of a stochastic partial differential 
equation. The SPDE that is discussed in this paper exhibits 
basic angular diffusive properties with a velocity 
constraint. However, the methods described in this paper 
can be readily applied to approximate other SPDEs. 

 
To illustrate the somewhat abstract properties of this 

SPDE, imagine a submarine traversing in an infinitely large 
ocean. Since the submarine is underwater, it is not visible; 
however, it is given that the submarine travels at a known 
constant velocity, with a known maximum angle deviation 
per hour. The solution to this equation would be a 
probability distribution on a two-dimensional mesh grid 
where each probability corresponds to the likelihood of the 
submarine being present there at a given time. The 
equation that models the behavior of this correlated 
random walk is given by 
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where p is the probability density function, t is time in 
hours, x and y are directions in a standard Cartesian plane 
in nautical miles, and φ is a stochastic variable 
corresponding to the angular position of the subject. This 
equation was derived around the Wiener process. 

 
The stochastic process in these equations satisfy the 

Markov property, meaning that the conditional probability 
distribution of future states is dependent only on the 
present state; states prior to the present one have no 
impact on future states. 
  

1.1 Finite-Difference Method 
 
The goal is to approximate solutions to SPDEs that have 

boundary conditions on the edges of their domains, which, 
in general, is a very difficult task. Finite-difference methods 
(FDMs) are numerical methods used to solve differential 
equations by replacing their derivatives by finite-difference 
approximations. These approximations provide a system of 
equations that can be solved using computation software 
much easier instead of the differential equation. There are 
three forms of finite-difference methods that are most 
commonly considered: forward, backward, and central. As 
their names suggest, forward and backward differences 
predict derivatives based on points ahead and behind the 
desired derivative, respectively. Central differences, which 
average forward and backward differences, are obviously 
better approximations of derivatives. As defined by 
LeVeque [3], the center difference used to approximate the 
partial derivative of a smooth, differentiable, one variable 
function u(x) at a point x is given by 
    

 D0u(x)  
 (    )  (     )

   
  

 
This scheme can be expanded to higher-ordered 

differential equations. The error of the center difference is 
proportional to ∆x2 , which is very small relative to the 
forward and backward difference methods that have an 
error roughly proportional to ∆x. 

 
A three-dimensional FDM function was implemented to 

model the behavior of equation (1) with y as the first 
dimension, x as the second dimension, and φ as the third 
dimension. The algorithm required velocity and standard 
deviation after one hour of motion as inputs, while range 
resolution and course resolution could be provided as 
optional inputs. The pseudocode for the implemented 
algorithm is as follows: 

 
 

Algorithm 1: Finite-Difference Method 
function FDM 

 Initialize diffusion constant and other variables 
 Set up mesh-grid as a two-dimensional array 
   Apply boundary conditions to mesh-grid 
 Find the difference between each cell in the 

positive   
           x-direction 

 Multiply the differences by the sine of the angle 
in a     given slice of the tensor 

 Add the difference to mesh with mass 
distributions 

 Repeat for variable y 
 for all n: 
 Sum the central finite-difference in the φ 

dimension 
 end loop 
 Add difference original probability mass 

distribution mesh 
 return probability distribution 

 
 Data was collected for several values of n while holding 
different values of velocity and standard deviation at a 
constant value. The probability distributions collected from 
the FDM were exported to spreadsheets, where they were 
analyzed for trends 

 
1.2 Monte Carlo Integration 
 

A Monte Carlo method is a computational algorithm that 
employs large-scale random sampling to determine a 
numerical approximation of a stochastic process. The key 
concept behind Monte Carlo integration is to utilize the 
Law of Large Numbers, which states that the average of 
values computed through random sampling will eventually 
converge to their corresponding probabilities. For example, 
suppose one is interested in approximating a variable y 
that can be expressed as 

 

   ∫  ( ) ( )   

 

  

 

 
where X is a random variable with probability density fx, g 
is a function, and x1, x2 . . . x3 are random numbers 
distributed according to the density fx. Then, the average 
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approximates y. 

 
It can be shown that the precision of a Monte Carlo 

approximation behaves in relation to the function 1/ √n, 
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where n is the number of simulations. This means that if 
we were to double the precision of the Monte Carlo 
approximation, the number of simulations would need to 
be quadrupled. 

 
The motive behind developing a Monte Carlo algorithm 

was to implement a reliable method that would allow for a 
rough comparison of other approximation results. The 
Monte Carlo algorithm that was constructed to achieve this 
goal was non-Markovian. The pseudocode of the algorithm 
is shown: 

 
Algorithm 2:Monte Carlo Integration  
function Monte_Carlo 

 Initialize variables and constants 
 for each n 
 Generate a vector full of random values of φ 
 Add rsin(φ) to x data 
 Add rcos(φ) to y data 
 Collect and normalize positions to a probability 

mass distribution 
 end loop 

 return probability distribution 
 

 
Each call to the function simulates 10,000,000 trials at a 

constant speed in intervals of one time step at a time. Data 
was collected holding these values constant, with varying 
values of maxAngle. This provides a rough estimate of how 
the probability distribution should look like. 
 

2. HEADING 2 
 

With the data collected from stages I and II, various 
tests were conducted to determine whether there was a 
large correlation between the two computed probability 
densities. This allowed us to verify whether the 
implemented numerical methods had been reasonably 
accurate.  

 
In addition to finding trends between the two 

numerical approximations, we sought a method of 
approximating the two one-dimensional arrays created in 
the initial two stages. This was accomplished by 
performing a regression analysis on the two data sets and 
finding an equation that accurately represents their trend. 

 
Through Stage I, we gained multitudinous amounts of 

data depicting probability distributions recorded at 
different loop values. The probability distributions were 
stored in spreadsheets as two-dimensional arrays. The 
largest probability value in each distribution was recorded 
into a separate one-dimensional array. In addition, the 
FDM provided more information regarding the behavior of 
the SPDE that was being approximated. Through the 

collected data, it was found that much of the probability 
mass was swelling to the sides. With every time step 
taken, this recurring trend spread and accumulated 
increasingly larger amounts of probability mass, especially 
on the sides of the two-dimensional array. This was a 
direct consequence of the wave-like process that the FDM 
employed. 

 
Stage II reinforced much of what was found in the 

initial stage. Even more probability distributions were 
collected through this method. In addition, since the 
Monte Carlo algorithm allowed its user to input the 
maximum angle of deviation as a parameter. Another one-
dimensional array was created to hold the values of loops 
corresponding to this angle 

 
The plot exhibits the trend between the greatest 

probability mass in the distributions collected by the FDM 
and Monte Carlo algorithms in the first two stages. The 
linear regression, representing close to 500, 000, 000 
Monte Carlo simulations, demonstrates that the FDM 
implemented in Stage I was accurate; the two computation 
methods were found to have a Pearson correlation 
coefficient of r = 0.84 

 

 
 

Figure 1: Plot comparing probability mass value 
computed by two different numerical algorithms show a 

strong positive trend 
 

The next result was gained by analyzing the 
relationship between the one-dimensional arrays, created 
in stages I and II, that contained the number of loops 
needed to model the second-order diffusive term and the 
angle that it seemed to correspond to. Various forms of 
regression were utilized, but it was evident that the two 
variables satisfied an inverse-square relationship. Using 
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this fact, a regression function was generated which 
allowed us to estimate one of the variables given the other. 
Next, a polynomial interpolation script was employed to 
compute angle deviation values to fill in the gaps that were 
present between previously collected data points. The 
benefit of finding a function to model this relationship was 
that it was continuous and differentiable everywhere, 
which allowed for better analysis. In addition, the 
interpolation script was tested against the data that had 
already been collected, which revealed that the polynomial 
had a low margin of error. As shown in Figure 2, the 
margin of error for the computed values of angle deviation 
was small even for large angle. 

 

 
Figure 2: Plot comparing the actual maximum angle of 

deviation versus the maximum angle of deviation 
computed via polynomial interpolation. Results show a 
relatively small margin of error, even for large angles. 

 

3. CONCLUSIONS 
 

The expected outcome of this research was to produce 
a numerical algorithm that could compute SPDEs as close 
to the analytical solution as possible without exceeding a 
computationally practical runtime. With the 
implementation of a Monte Carlo algorithm, we could gain 
information on whether the FDM had some accuracy. We 
found that there was a moderately strong positive trend 
between the FDM and Monte Carlo approximations, which 
infers promise in this method. However, since a non-
Markovian Monte Carlo algorithm was used to 
approximate a stochastic process that satisfies the Markov 
property, even the Monte Carlo approximation is less than 
optimal. The implication of this discrepancy is that the 
FDM could be slightly more accurate or slightly less 
accurate than what was predicted.  

During the process of creating an accurate 
approximation, it was important for the numerical 
algorithms to take boundary conditions into 
consideration. Using Neumann and Symmetric boundary 
conditions, we could specify a region for the SPDE to be 
solved, which allowed for unique solutions. This was a 
step that was not present in some previous work [5], 
which led to an increased error in their approximations.  

 
In investigating these phenomena, we also found an 

inverse-square relationship between the number of loops 
required to model the second-order diffusive term and the 
angle that it seemed to correspond to. In the opinion of 
this investigation, we believe that the inverse-square 
relation is evidence of a deep pattern in stochastic 
analysis, particularly, the well-known dW2 = dt 
relationship [6], where W and t are the Wiener process 
and time, respectively 

 
These findings cannot be referenced in other journals 

because of a lack of published material on the numerical 
analysis of SPDEs. While Bućkova et. al.[5] credit finite-
differences as a viable tool to solve SPDEs, the research 
does not specifically include an implementation or 
analysis of the method. In addition, an exhaustive 
literature review could not find any work that was able to 
associate an inverse-square relationship of an SPDE to the 
foundational stochastic differential.  

 
These conclusions are also capable of enhancing the 

findings of previous work. For instance, Giles et. al. [8] 
develops a differing numerical method of solving SPDEs, 
but states, “For the initial-boundary value problem . . . an 
efficient numerical method is needed.” This is an issue that 
the FDM mitigates to a large extent by taking Neumann 
and Symmetric boundary conditions into consideration. 
Similarly, Deb et. al. [9] could benefit from this work by 
gathering additional data from our numerical methods to 
compare to their approaches. Several other approaches of 
research can also be expanded upon with this method of 
approximation; the technique allows us to minimize the 
margin of error by considering all boundary conditions, 
which reduces the number of “after-adjustments” needed. 

 
When data was collected using different parameters in 

our algorithms, there was strong consistency in what 
would be expected. In fact, the only variables to have a 
major effect on the variability of the probability 
distributions were the standard deviation and stochastic 
variable parameters, both of which are expected to do so. 
The actual approximations of the equations themselves 
were, in all cases, consistent. For example, the correlation 
between the FDM and Monte Carlo methods would still be 
present. Ultimately, this work is an advantageous 
contribution to all scientific fields because of its ability to 
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convert a complicated SPDE equation into a simple 
computational problem. 

 
Essentially, through a systematic approach that 

iteratively collected large amounts of data, this research 
enabled us to attain a moderately accurate approximation 
of SPDEs. Moreover, this work could reproduce the well-
known dW2 = dt inverse square relationship in a nontrivial 
manner. Consequently, this work will allow future 
research in the fields of numerical and stochastic analysis 
to make use of the inverse square that can be found in the 
variables of the SPDE that they are working with. Because 
of this work, models involving stochastic processes will 
improve, which can be beneficial in most scientific fields.  

 
The results that are detailed in this report are only 

supported by the results described in this paper since 
there is a limited amount of published pertinent literature 
analyzing the use of FDMs in approximating SPDEs. In 
addition, there is a limitation on what can be achieved 
computationally as the approximations are still inherently 
random. 

 
Despite the success we have had with these methods, 

the methods used in this paper are not infallible. Much of 
the testing performed in this paper relied on random 
sampling that, due to computational limitations, could 
potentially be less than optimal. Furthermore, the 
algorithms that were being utilized to collect data did so in 
a wave-like diffusion manner. It was found that this 
technique of organizing collected data yielded a swelling 
of probability mass to the sides of the two-dimensional 
array, which led to under approximations of the greatest 
probability mass in long-term testing. In addition, data 
was not analyzed for long-term scenarios, in which it is 
likely that the algorithms utilized in this report will 
produce inaccurate results.  

 
To improve this research, it is essential to implement a 

method of redistributing the probability mass that is 
accumulating to the sides of the two-dimensional array. 
One possible approach to resolve this issue would be to 
construct a Markov Chain Monte Carlo algorithm that 
makes decisions of reallocating probability mass on the 
basis of its current state. It would also be beneficial to 
develop newer numerical methods that allow us to 
investigate the behavior of SPDEs from different 
perspectives.  

 
Earlier in this research, different methodologies that 

relied on primarily physics-based principles were 
attempted rather than mostly mathematical methods. One 
approach was to treat the behavior of the SPDE as a closed 
system. The fact that energy is conserved, by the First Law 
of Thermodynamics, would allow us to repeatedly 
recalculate the total energy of the system using 

Hamiltonians or other energy functions. In summary, the 
allocation of the probability mass could be based on the 
motion of the “ship.” A problem that arose from this 
approach, however, was that it did not consider the SPDE’s 
boundary conditions or the computational difficulty 
associated with persistently calculating equations that 
govern such behavior.  

 
Through this research, we could address some of the 

deficiencies that other approximation methods faced. The 
future of this research lies in the optimization of the 
numerical methods along with the development of newer 
methods. It is also a necessity to develop a more 
sustainable method of testing the accuracy of 
approximations, specifically one that satisfies the Markov 
process. These progressions will help completely 
automate the process of solving these equations, which 
will be invaluable to all who make use of SPDEs 
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