

SPECTRUM ANALYSIS OF DIFFERENT COLUMN CONFIGURATION SUBJECTED TO BASE EXCITATION USING MODAL SUPERPOSITION METHOD

Kembral Bhargavi¹, Shilpa S²

¹M.Tech Student, Department of Civil Engineering, Srinivas School of Engineering, Mangaluru ²Assistant Professor, Department of Civil Engineering, Srinivas School of Engineering, Mangaluru _____***________***

Abstract - The performance of a structural component is a important criteria in analyzing a life of a structure. The scope of the present work is to investigate and understand the effect of different parameters including cross section shape wrapping on modal parameters like modal frequency, mode shape which subjected to ground motion. This paper presents the modal super position method obtained from the computations of slender columns. The analysis was performed for Solid RC, Steel and composite wrapped columns.

Key Words: Vibration, Composite columns, Modal super position method, Modal frequency, Mode shape, Ground motion.

1. INTRODUCTION

The subject of vibration became interested to people after the first failure of the Tacoma Bridge in 1940's. The main cause of failure of the bridge was concluded due to the vibration caused due to negative damping. Negative damping is the opposite of normal damping where oscillation decreases in other words in negative damping bigger oscillations takes place.

The project is performed for a individual structural component so as to determine the stability under the base excitation. In order to counteract these forces base isolation is adopted according to Eurocode 8. The analysis is performed using modal super position method in the ANSYS software.

1.1 Base Isolation

The most executed methods for ensuring a structure against quake forces is known as seismic base seclusion or base isolation. Base disconnection framework comprises of separation units with or without isolation segments, Isolation units are the essential components of a base disengagement framework which are expected to give the decoupling impact to a building or non-building structure. Isolation segments are the associations between segregation units and their parts having no decoupling impact of their own.

Base segregation is a standout amongst the most intense instruments of quake building to control the basic vibration caused because of seismic forces.

1.2 Base Excitation

Base excitation is mainly caused due to the seismic forces acting on the structure, preventing these excitations from passing from a vibrating base through structure. The excitation is always defined as a linear acceleration. The result defined relative to ground, the displacement, velocity and accelerations of any point on the structure will include the base motion. The excitation is at the base not the mass and the excitation is given in terms of displacement not force.

2. SOFTWARE USED FOR THE ANALYSIS

For the present study ANSYS software was used, under the dynamic analysis spectrum analysis was done for the column using modal superposition method.

A range is one in which the after effects of a modular investigation are utilized with a known range to compute displacement and stresses in the model. It is for the most part utilized as a part of place of a time-history examination to decide the reaction of structures to arbitrary or timesubordinate stacking conditions, for example, tremors, wind loads, sea wave loads, stream motor push, rocket engine vibrations, etc. A reaction range input speaks to the greatest reaction of single level of frameworks to a period history stacking capacity.

3. GEOMETRIC MODELLING

In this paper, square sections are demonstrated with various thicknesses of steel tube and CFRP wrapping. The size of column is taken as 100x100x3000mm. These thicknesses are provided in outer and central portion of the column. Provided thickness of steel fibers are 0.2, 0.4, 0.8, 1.2, 1.6, 2mm for square column.

© 2017, IRJET

Impact Factor value: 5.181

3.1 MODAL SUPER POSITION METHOD

Many solution disciplines of structural dynamics uses the modal superposition technique to perform efficiently the transient or harmonic analysis. Essentially, the range examination dependably utilizes the modular superposition as a fundamental idea. The fundamental thought of the modular superposition strategy is to depict the dynamic reaction of a structure by a direct blend of the principal 'n' undamped mode shapes. The condition is given by

$$u(t) = \sum_{i=1}^{n} \varphi_i \cdot y_i(t) = \phi \cdot y(t)$$

Where φ_i denotes the undamped mode shape of mode i, and $y_i(t)$ is its modal coefficient. In the columns of the modal matrix ϕ , we find the n undamped mode shapes φ_i and the vector y(t) consists of the n modal coefficients $y_i(t)$. By substituting the above equation in $m\ddot{x} + c\dot{x} + kx = F(t)$

And further pre-multiplying with the transposed modal matrix Φ^{T} we get,

$$\Phi^{T}M\phi.y(t) + \Phi^{T}C.\phi.y(t) + \Phi^{T}K\phi.y(t) = \Phi^{T}.f(t)$$

Since the undamped mode shapes are orthogonal regarding the mass and firmness network, the above condition is decoupled and speaks to 'n' conditions each portraying a summed up single level of flexibility display in the modular subspace. Just, an arrangement of decoupled conditions is just accomplished if the damping framework is corresponding to the aggregate mass and the aggregate firmness lattice.

3.2 BOUNDARY CONDITIONS

The displacement boundary condition is needed to constrain the model to get the solution. Boundary condition is given for the column as one end fixed and other end free. To ensure the one end fixed for the column, all degree of freedom is selected.

3.3 MATERIAL PROPERTIES

Table -1: Material properties of Steel used in analysis

Property name	Symbols	Values	Units
Young's modulus	Е	200	Gpa
Poisson Ratio	ν	0.3	
Density	ρ	7900	Kg/m ³

Property Name	Symbol	Values	Units
Young's Modulus in x- direction	Ex	180	GPa
Young's Modulus in y- direction	Ey	10.3	GPa
Young's Modulus in z- direction	Ez	10.3	GPa
Poisson ration in xy plane	ν_{xy}	0.28	
Poisson ration in yz plane	ν_{yz}	0.015	
Poisson ration in xz plane	ν_{xz}	0.015	
Shear Modulus in xy plane	G _{xy}	71.7	GPa
Shear Modulus in yz plane	Gyz	10.3	GPa
Shear Modulus in xz plane	G _{xz}	10.3	GPa
Shear Modulus in xy plane	ρ	1800	kg/m ³

Table -2: Material properties of CFRP used in analysis

4. RESULTS AND DISCUSSION

In this project columns were subjected to model and spectrum analysis by modal super position method and the analysis were extracted up to 10 modes. The first case was considered was for fully solid column, and from case 2 to case 7 and case 8 to case 12 analysis was done with varying thickness of the steel and composite wraps respectively.

4.1 MODAL ANALYSIS

The table below shows the modal analysis results for different column configuration. The frequency values for solid model steadily increases up to mode 6 and after the 7th mode the value rapidly increases from the 6th mode the results obtained will be in three dimensional and the mode shape are variables.

Table -3: Results for Modal analysis of Solid and steel wrapped columns

i.	_			-	-			-
		case1	case2	case3	case4	case5	case6	case7
		solid			Steel v	vrap		
	Thickness, mm		0.4	0.8	1.2	1.6	2	4
	M o d e	Frequ ency, Hz	Frequen cy, Hz	Freque ncy, Hz	Freque ncy, Hz	Frequen cy, Hz	Freque ncy, Hz	Freq uenc y, Hz
	1	0.17	0.19	0.21	0.22	0.23	0.24	0.28
	2	0.17	0.19	0.21	0.22	0.23	0.24	0.28
	3	1.08	1.19	1.29	1.37	1.44	1.5	1.74
	4	1.08	1.19	1.29	1.37	1.44	1.5	1.74
	5	2.99	3.31	3.58	3.8	3.99	4.17	4.8

Т

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

JET Volume: 04 Issue: 10 | Oct -2017

www.irjet.net

p-ISSN: 2395-0056

6	2.99	3.31	3.58	3.8	3.99	4.17	4.8	Та	able -4: Res	sults for Moo	dal Analysis Columns	of Compos	ite
7	4.87	5.18	5.42	5.62	5.8	5.95	6.52			wrappeu	Columns		
8	5.8	6.41	6.92	7.35	7.72	8.04	9.24		case8	case9	case10	case11	case12
	EO	6.41	6.92	7.35	7.72	8.04	9.24			I		Composite wrap	
9	5.8	0.41	0.92	7.35	1.12	8.04	9.24	Thickness, mm	0.4	0.8	1.2	1.6	2
1 0	7.91	8.26	8.58	8.85	9.09	9.3	10.09	Mode	Frequency, Hz	Frequency, Hz	Frequency, Hz	Frequency, Hz	Frequency, Hz
								1	0.173	0.173	0.174	0.175	0.174
					-			2	0.173	0.173	0.174	0.175	0.174
								3	1.079	1.081	1.086	1.093	1.086
								4	1.079	1.081	1.086	1.093	1.086
								5	2.998	3.000	3.02	3.038	3.020
				14				6	2.998	3.000	3.02	3.038	3.012
								7	4.869	4.867	4.86	4.849	4.860
								8	5.817	5.830	5.857	5.89	5.857
								9	5.817	5.830	5.857	5.89	5.857
								10	7.890	7.888	7.852	7.789	7.852
	/												
								Fig	Case 8 g-2: Mode S	Shape for ca		1 one end fi:	Case 10
	x			z x _x			¥.,	The m	ode shape f	boundary for the comp	condition	s with thick	ness is

Case 7

Fig -1: Mode Shape for case 1-7 with one end fixed boundary condition

Case 6

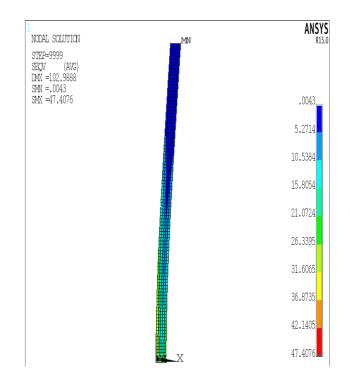
As seen from the mode shapes for case one the displacement in x direction is more at the free end. For columns with increasing thickness of the steel wrap the frequency at the 10^{th} mode higher this concludes that as the thickness increases the frequency value decreases. The mode shape for the composite wraps with thickness is 0.4, 0.8, 1.2 is shown in the above figures. After the wrapping of column with 1.2mm it is observed that there are no much changes in the dynamic response of the structure.

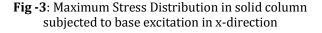
The above table shows the results of modal analysis done for composite wrapped columns. The frequency thus obtained shows that the composite columns are much fatigue resistant as the frequency value is less compared to the steel wrap with varying thickness up to 2mm.

Т

Case 5

International Research Journal of Engineering and Technology (IRJET) Volume: 04 Issue: 10 | Oct -2017 www.irjet.net


e-ISSN: 2395-0056 p-ISSN: 2395-0072


4.2 SPECTRUM ANALYSIS

IRJET

Table -5: Results Of Spectrum Analysis For Solid Column

Mod e No.	Freque ncy	sv	Parti cipati on facto r	Mode Coeffici ent	M. C. ratio	Effectiv e Mass	Cumulat ive Mass Fraction
1	0.1912	77.200	6.11	326.9	1.0000	37.3332	0.54706
2	0.1912	77.200	- 3.021	-161.6	0.49444	9.12708	0.68080
3	1.192	77.200	- 3.755	-5.168	0.01581	14.1007	0.88742
4	1.192	77.200	0.458 1	0.6304	0.00193	0.20982 3	0.89049
5	3.311	77.200	2.175	0.3878	0.00118	4.72923	0.95979
6	3.311	77.200	- 0.454 1	-8.10E- 02	0.00025	0.20619	0.96282
7	5.177	77.200	- 1.64E -11	-1.20E- 12	0.000	2.70E- 22	0.96282
8	6.416	77.200	- 1.576	-7.49E- 02	0.00023	2.48301	0.99920
9	6.416	77.200	- 0.233 1	-1.11E- 02	0.00003	5.43E- 02	1.0000
10	8.270	77.200	- 3.60E -09	-1.03E- 10	0.000	1.30E- 17	1.0000

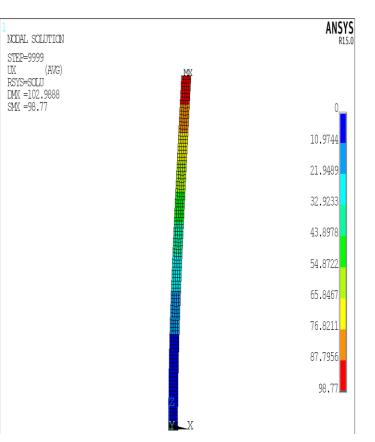


Fig-4: Displacement of solid column subjected to base excitation in x-direction

Table -6: Results Of Spectrum Analysis For Solid column
wrapped with 0.8mm steel

Mod e No.	Freque ncy	SV	Particip ation factor	Mode Coeffici ent	M. C. ratio	Effecti ve Mass	Cumulat ive Mass Fraction
1	0.2067	77.200	5.808	265.8	1.00	33.737 3	0.47063 5
2	0.2067	77.200	-3.88	-117.5	0.6679 95	15.054 2	0.68064
3	1.288	77.200	-3.725	-4.39	0.0165 15	13.876 2	0.87421 3
4	1.288	77.200	1.076	1.268	0.0047 72	1.1586 3	0.89037 6
5	3.575	77.200	2.11	0.3227	0.0012 14	4.4504	0.95245 9
6	3.575	77.200	-0.8591	-0.1314	0.0004 94	0.7380 27	0.96275 5
7	5.421	77.200	-1.68E- 11	-1.12E- 12	0.00	2.83E- 22	0.96275 5
8	6.919	77.200	-1.597	-6.52E- 02	0.0002 45	0.5506 4	0.99833 6
9	6.919	77.200	0.3454	1.41E- 02	0.0000 53	0.1192 86	1.00
10	8.581	77.200	-1.59E- 09	-4.22E- 11	0.00	2.52E- 18	1.00

IRJET

International Research Journal of Engineering and Technology (IRJET) Volume: 04 Issue: 10 | Oct -2017

e-ISSN: 2395-0056 p-ISSN: 2395-0072

Fig-5: Maximum Stress Distribution in solid column wrapped with 0.8mm steel subjected to base excitation in x-direction

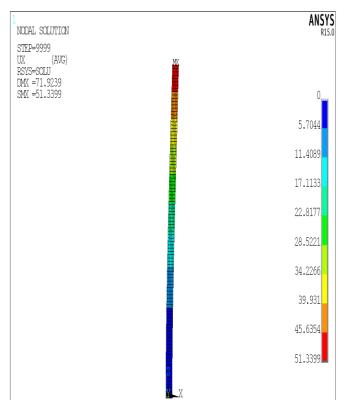


Fig-6: Displacement of solid column wrapped with 0.8mm steel under base excitation in x-direction

Mode No.	Freq uenc y	sv	Particip ation factor	Mode Coefficie nt	M. C. ratio	Effectiv e Mass	Cumula tive Mass Fractio n
1	0.17 42	77.200	5.42	349.4	1.000	29.372 8	0.42753
2	0.17 42	77.200	-4.173	-269.00	0.76991 2	17.411 2	0.68095 5
3	1.08 6	77.200	-3.271	-5.432	0.01554 7	10.748 8	0.83740 7
4	1.08 6	77.200	1.912	3.168	0.00906 7	3.6559 6	0.89062 1
5	3.02	77.200	1.937	0.4153	0.00118 9	3.7519 3	0.94523 1
6	3.02	77.200	-1.101	-0.2361	0.00067 6	1.2128 3	0.96288 5
7	4.86	77.200	-1.05E- 11	-8.67E- 13	0.000	1.10E- 22	0.96288 5
8	5.85 7	77.200	-1.456	-8.30E- 02	0.00023 8	2.1194 7	0.99373 4
9	5.85 7	77.200	0.6561	3.74E-02	0.00010 7	0.4304 91	1.000
10	7.85 2	77.200	-5.33E- 11	-1.69E- 12	0.000	2.84E- 21	1.000

Table -6: Results Of Spectrum Analysis For Solid column wrapped with 1.6mm CFRP

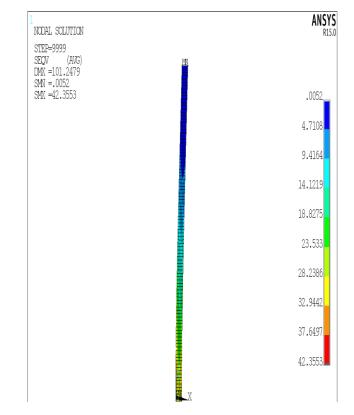
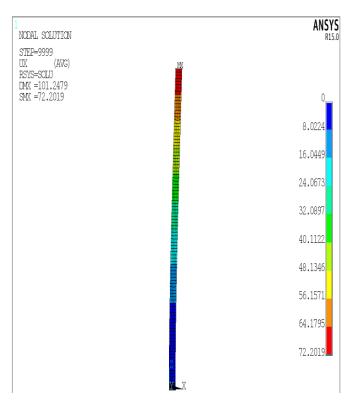



Fig-7: Maximum Stress Distribution in solid column wrapped with 1.6mm CFRP subjected to base excitation in x-direction

International Research Journal of Engineering and Technology (IRJET)e-ISSN: 2395-0056INJETVolume: 04 Issue: 10 | Oct -2017www.irjet.netp-ISSN: 2395-0072

Fig-8: Displacement of solid column wrapped with 1.6mm CFRP under base excitation in x-direction

	Stress max. MPa	Mode combined displacement, mm
case1	47	98.78
case2	40.93	69.29
case3	33.47	54.23
case4	30.6	48.3
case5	28.21	40.4
case6	27.5	37.14
case7	24.11	27.79
case8	48	90.36
case9	46	72.7
case10	40.54	71
case11	42	72.16
case12	44	71

Table -7: Results of stress and displacement corresponding to different cases

5. CONCLUSIONS

1. The maximum stress value and the maximum displacement value for the solid column is greater when compared to the steel and CFRP wrapping.

2. The dynamic response from the mode shapes concludes that the modal analysis is effective only until the 6^{th} mode shape. Further determination of mode shapes does not give satisfactory results.

3. After the 6th mode the stress and deformations are angular and rotational. Analysing the mode shapes in this condition, as there are 'n' number of modes the solution obtained are rational to conclude.

4. The solid column is likely to undergo more deformation. Hence the use of CFRP and steel warp with thickness up to 1.6 to 2 mm can be suitably adopted depending on the height of the column.

REFERENCES

[1] Aydogdu. M and Timarci. T. (2003), "Vibration Analysis of Cross-Ply Laminated Square Plates with General Boundary Conditions", Compos. Science and Tech, Vol.63, pp.1061-1070.

[2] Fabio Mazza and Alfonso Vulca no (2004), "Base-isolation techniques for the seismic protection of RC framed structures subjected to near-fault ground motions",13th World Conference on Earthquake Engineering Vancouver, B.C., Canada Paper No. 2935.

[3] Gawali A.L. and Sanjay C. Kumawat (2011) "Vibration Analysis of Beams", World Research Journal of Civil Engineering, Vol. 1, pp. 15-29.

[4] H. P. Lin and J. Ro (2003), "Vibration analysis of planar serial-frame structures," Journal of Sound and Vibration, Vol. 262, pp.1113–1131.

[5] Kelly, and A.Aveston, J.,(2002), "Theory of Multiple Fracture of Fibrous Composites", Journal of Materials Science, Vol. 8, pp.352-362.

[6] Mohammed F. Aly, I. G. M. Goda, and Galal A. Hassan (2010) "Experimental Investigation of the Dynamic Characteristics of Laminated Composite Beams", International Journal of Mechanical & Mechatronics, Vol. 10, pp. 03-15.

[7] Marjan Djidrov, Viktor Gavriloski, Jovana Jovanova (2014) "Vibration Analysis of Cantilever Beam for Damage Detection", FME Transactions, Vol.42, pp. 311-316.

[8] M. Mezzi, A. Dusiand K. Fuller (2008), "The largest baseisolation project in the world", The 14World Conference on Earthquake Engineering", Vol.14, pp.16-23.

[9]Muhammad Khairil Ibrahima, Azlan Abrahm and Baderul Hisham Ahmad (2014), "Vehicle Induced Vibration on Real Bridge and Integral Abutment Bridge", Applied Mechanics and Materials, Vol.773, pp 923-927.

[10] Prof. R.B.Ghodke and Dr.S.V.Admane (2015), "Effect Of Base-Isolation For Building Structures", International Journal of Science, Engineering and Technology Research, Vol.4, pp.971-974.