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Abstract - Automata Theory is found useful in many high-
level programming languages. It can be applied for the 
evaluation of regular expressions. Pattern matching requires   
a complicated model, with a different programmatic 
approach. There are many techniques available for pattern 
matching process that is memory efficient which reduces the 
size of Deterministic finite automata.  Finite Automata is 
used in pattern matching process to represent the patterns. 
To make it memory efficient we can minimize the number of 
states, minimize number of transitions. In this paper we 
present a new automata-based approach for pattern 
matching. We use a macro that takes a grammar and 
generates a function that reads off the leaves of a tree and 
tries to parse them as a string in a context-free language. 
The experimental results indicate that this approach is a tool 
for pattern matching. 
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1. INTRODUCTION 

 
Finite automata 
 
A model of computation composed of states, a transition 
function, and an input alphabet.   
 
Finite State Machine  
 
An automaton (in automata theory) is a 5-tuple (Q, Σ, δ, q0, 
F) defined as following: 

 Q – Finite set of states 
 Σ – Alphabet 

δ – Transition function (δ: Q × Σ → Q) 
 q0 – First (starting) state 
 F – Set of finishing (accept) states 

 
Pattern Matching 
 
It is the act of checking a given sequence of tokens for the 
presence of the constituents of some pattern.  
 
Transition function 
 
It describes a condition that has to be fulfilled to enable the 
transition.   
 
 

Input alphabet 
 
The input recognized by the Finite State Machine   
 
Regular Language 
 
It is a formal language that can be expressed using 
a regular expression. 
 

2. ANALYSIS OF ALGORITHMS FOR PATTERN 
MATCHING 

 
An automaton is a machine that scans a string and either 
accepts it or rejects it. The string is accepted if the 
automaton reaches the finishing (accept) state after 
"reading" it. "Reading" the string is done one symbol at a 
time and using the transition function determine what the 
next state will be. If the automaton is not in an accept state 
at the end, the string gets declined. Finite automata can be 
divided into two subgroups. Automata can be 
either deterministic (DFA) or nondeterministic (NFA). DFA 
is deterministic; meaning the transition from one state to 
another is unique. In NFA transition in the automaton can 
go from one state to several different states by "reading" 
only one symbol. finite automata is usually represented by 
a directed graph where arrows represent the transition 
function. 
 
There are two commonly used algorithms for pattern 
matching: 
 

 Knuth-Morris-Pratt (KMP)  
 Boyer-Moore (BM) 

 
Both the algorithms make use of similar method. The 
complexity of the algorithms take linear time: O(m + n) 
where m is the length of the string, and n is the length of 
the file. The main drawback of these algorithms is that they 
just check whether certain characters are equal or unequal. 
No arithmetic operation is performed. 
 
Boyer-Moore is a little faster, but more complicated. 
Knuth-Morris-Pratt is simpler.  
 
Finite state machines 
 
A finite state machine (FSM) is used for representing 
a language . A language L is a set of strings. If the strings 

http://en.wikipedia.org/wiki/Deterministic_finite_automaton
http://en.wikipedia.org/wiki/Nondeterministic_finite_automaton
https://www.ics.uci.edu/~eppstein/161/people.html#boyer
https://www.ics.uci.edu/~eppstein/161/people.html#moore
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are accepted by the FSM then the language is for the 
automation. We can write L(M), Where M is the FSM. 
 
Algorithm 
 
We represent the language as the set of those 
strings accepted by some program. Once we find the right 
machine, we can test whether a given string matches just 
by running the program. 
 
In KMP algorithm first the pattern is turned into a machine, 
then run the machine. The most important and difficult 
part of KMP is finding the machine. 
 
We need some restrictions on what we mean by "program". 
This is where "deterministic & finite" come from. 
 
One way of thinking about it, is in terms of programs 
without any variables. All such a program can do is look at 
each incoming character determine what line to go to, and 
eventually return true or false (depending on whether it 
thinks the string matches or doesn't). 
 
A program for testing whether a string has an even 
number of characters. 
 
    main() 
    { 
        for (;;) { 
            if (getchar() == EOF) return TRUE; 
            if (getchar() == EOF) return FALSE; 
        } 
    } 
There are no variables in the above program. We can avoid 
complicated loops, and use goto statements.  
    main() 
    {        even: 
            if (getchar() == EOF) return TRUE; 
            else goto odd; 
        odd: 
            if (getchar() == EOF) return FALSE; 
            else goto even; 
    } 
 
As there are no variables, we can only represent 
knowledge about the input in terms of where we are in the 
program. We think of each line in the program as being 
a state, representing some specific fact about the part of 
the string we've seen so far. Here the states are "even" and 
"odd". 
 
Since there are no variables, the only thing a machine can 
do in a given state is to go to different states, depending on 
what character it sees. 
 

The program can be represented using State transition 
diagrams. A circle will represent a state, an arrow with a 
label will represent that we go to that state if we see that 
character. It is a special kind of graph. The start state is also 
indicated with arrow from nowhere. The program returns 
true if the string ends at that state. So our program can be 
represented with the following diagram. 
 
Fig -1: State transition diagram for testing whether a 

string has an even number of characters 
 

 
 

Fig -2:  State transition diagram for identifying 
comments in a c program.  

 

 
 
If we're given such a diagram, and a string, we can easily 
see whether the corresponding program returns true or 
false. Simply place a marker  on the initial state, and move 
it around one state at a time until you run out of characters. 
Once you run out of characters, see whether the state 
you're in has an "accept" arrow -- if so, the pattern 
matches, and if not it doesn't. In a computer, we can use 
any of the normal graph representations to store them. 
One particularly useful representation is a transition 
table: we make a table with rows indexed by states, and 
columns indexed by possible input characters. Then 
simulating the machine can be done simply by looking up 
each new step in the table. (You also need to store 
separately the start and accept states.) For the machine 
above that tests whether a string has even length, the table 
might look like this:       

 
 
 
 
 

https://www.ics.uci.edu/~eppstein/161/960201.html#rep
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Table -1:   Transition table for determining whether 
a string has even length or odd length. 

      
States/input any 

odd even 

even odd 

 
Table -2:   Transition table for the C comment 

machine. 
 

 
Since a state diagram is just a kind of graph, we can use 
graph algorithms to find some information about finite 
state machines. For instance we can simplify them by 
eliminating unreachable states, or find the shortest path 
through the diagram. 
 
Automata and string matching 
 
If we want to match "automata". Rather than just starting 
to write states down, let's think about what we want them 
to mean. At each step, we want to store in the current state 
the information we need about the string seen so far. Say 
the string seen so far is "...stuvwxy", then we need to know 
two things: 
 
1. Have we already matched the string we're looking for 

("auto")? 
2. If not, could we possibly be in the middle of a match? 
 
If we're in the middle of a match, we need to know how 
much of "mata" we've already seen.  
 
Depending on the characters we haven't seen yet, there 
may be more than one match that we could be in the 
middle. 
 
So we want our states to be partial matches to the pattern. 
The possible partial matches to "memo" are "", "m", "me", 
"mem", or (the complete match) "memo" itself. In other 
words, they're just the prefixes of the string. In general, if 
the pattern has m characters, we need m+1 states; here 
m=4 and there are five states. 
The start and accept states are obvious: they are just the 0- 
and m-character prefixes.  

In general the transition from state+character to state is 
the longest string that's simultanously a prefix of the 
original pattern and a suffix of the state+character we've 
just seen. This is enough to tell us what all the transitions 
should be. If we're looking for pattern "memo", the 
transition table would be: 
 
Table -3:   Transition table for the pattern “memo”. 
 

States 
/input 

m e o other 

empty "m" empty empty empty 

"m" "m” "me" empty empty 

"me" "mem" empty empty empty 

"mem" "m" "me" "memo" empty 

"memo" "memo" "memo" "memo" "memo" 

 
For instance the entry in row "mem" and column ‘o’ says 
that the largest string that's simultaneously a prefix of 
"memo" and a suffix of "mem"+o="memo" is simply "o". We 
can also represent this as a state diagram: 
 

 
 

Fig -3:  State transition diagram for the pattern 
“memo”. 

 
Simulating this on the string "bananamemo", we get the 
sequence of states empty, empty, empty, "m", "me", "mem", 
"me", "mem", "memo", "memo", "memo". Since we end in 
state "memo", this string contains "memo" in it 
somewhere. By paying more careful attention to when we 
first entered state "memo", we can tell exactly where it 
occurs; it is also possible to modify the machine slightly 
and find all occurrences of the substring rather than just 
the first occurrence. 

 

3. EXPERIMENT USING THE STRING “BARBARA” 
 

“barbara” is a fun word. It consists of just three letters (b, a, 
r) and has the substring bar repeated twice. Given a 
random string of text, how can we determine if barbara 
appears in it? The searching algorithms Knuth–Morris–
Pratt, Boyer-Moore and many others may not be enough. 
We can make an effective search by constructing a DFA for 
it. The DFA will accept a string if and only if it is in an 
accept state after "reading" the string. Automaton given on 

States/input / * EOL other 

empty slash empty empty empty 

C++ C++ C++ empty C++ 

asterisk empty asterisk C C 

slash C++ C empty empty 

C C asterisk C C 
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the graph below will be left in an accept state iff it contains 
barbara as a substring. Let's get on with the construction. 
In order to detect barbara, we will need 8 states and only 
one of them will be an accept state (first seven will be for 
checking what precedes what). So, our set Q will be Q = {0, 
1, 2, 3, 4, 5, 6, 7}. For the alphabet Σ, we will use the 
Standard English alphabet. Strings over Σ are all words that 
can be generated using letters of the English alphabet 
(labeled as Σ*). The transition function δ is represented by 
the arrows on the graph below. Our starting state will be 0, 
and accept state set will be F = {7}. Desiging δ is the 
hardest part of the process, of course. 
 
The transition function displayed on the graph is the 
following: 
 

 
 

δ(3, b) = 4;        // bar -> barb 
δ(6, b) = 4;        // barbar -> barb 
δ({0, s}, b) = 1;           // x -> b 
δ(1, a) = 2;        // b -> ba 
δ(4, a) = 5;        // barb -> barba 
δ(6, a) = 7;        // barbar -> barbara (the end) 
δ(s, a) = 0;        // x -> ɛ (empty word) 
δ(2, r) = 3;        // ba -> bar 
δ(5, r) = 6;        // barba -> barbar 
δ(s, r) = 0;        // x -> ɛ 
δ(s, x) = 0;        // x -> ɛ     
 
 s is a variable state not included in the definition 

As you can see, the automaton will be in the finishing state 
iff it recognizes barbara as a substring. When it gets to the 
finishing state, the loop will make it stay there. Let's try it 
out and see how it works. For the example, I'll use the 
transition function and I'll show you each step. Before that, 
I have to state that δ(s, abc) = δ(δ(s, a), bc), meaning that 
the word can be broken at any place and we will still get 
the same results. 
 

 

 δ(0, oifsfscnbarbakjkjibarbarabkf) =  
 δ(δ(0, oifsfscn), barbakjkjibarbarabkf) =  
 δ(0, barbakjkjibarbarabkf) =  
 δ(δ(0, bar), bakjkjibarbarabkf) =  
 δ(3, bakjkjibarbarabkf) =  
 δ(δ(3, ba), kjkjibarbarabkf) =  
 δ(5, kjkjibarbarabkf) =  
 δ(δ(5, kjkji), barbarabkf) =  
 δ(0, barbarabkf) =  
 δ(δ(0, barbara), bkf) =  
 δ(7, bkf) = 7 which is an accept state. 

 

 
 

Fig -3:  State transition diagram for identifying 
comments Deterministic Finite Automata for 

“barbara” Problem. 
 

4. CONCLUSIONS 
 

It is difficult to design pattern matching algorithms, but 
Finite automata can be used to match strings and regular 
expressions of all kinds. A Finite Automation accepts 
regular languages and a language is regular iff it has a 
regular expression representing it. The study of formal 
grammar and regular expressions has shown us with those  
topics the utility, robustness, and sometimes elegance of 
regular languages. The same approach can also be applied 
to variety of other functional programming languages. 
Finally, the use of automata as a symbolic representation 
for verification has been investigated in other contexts. 
Based on the pattern and its length the size of the Finite 
Automata may vary. The Deterministic Finite Automata 
possibly constructed from the Nondeterministic Finite 
Automata. 
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