
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 10 | Oct -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1295

Pattern Matching using Computational and Automata Theory

Vennila Santhanam

 Assistant Professor,Computer Science Department, Auxilium College (Autonomous), Vellore
---***---

Abstract - Automata Theory is found useful in many high-
level programming languages. It can be applied for the
evaluation of regular expressions. Pattern matching requires
a complicated model, with a different programmatic
approach. There are many techniques available for pattern
matching process that is memory efficient which reduces the
size of Deterministic finite automata. Finite Automata is
used in pattern matching process to represent the patterns.
To make it memory efficient we can minimize the number of
states, minimize number of transitions. In this paper we
present a new automata-based approach for pattern
matching. We use a macro that takes a grammar and
generates a function that reads off the leaves of a tree and
tries to parse them as a string in a context-free language.
The experimental results indicate that this approach is a tool
for pattern matching.

Keywords: Automata Theory; Pattern Matching; Regular
Languages; Finite automata, Regular expression.

1. INTRODUCTION

Finite automata

A model of computation composed of states, a transition
function, and an input alphabet.

Finite State Machine

An automaton (in automata theory) is a 5-tuple (Q, Σ, δ, q0,
F) defined as following:

 Q – Finite set of states
 Σ – Alphabet

δ – Transition function (δ: Q × Σ → Q)
 q0 – First (starting) state
 F – Set of finishing (accept) states

Pattern Matching

It is the act of checking a given sequence of tokens for the
presence of the constituents of some pattern.

Transition function

It describes a condition that has to be fulfilled to enable the
transition.

Input alphabet

The input recognized by the Finite State Machine

Regular Language

It is a formal language that can be expressed using
a regular expression.

2. ANALYSIS OF ALGORITHMS FOR PATTERN
MATCHING

An automaton is a machine that scans a string and either
accepts it or rejects it. The string is accepted if the
automaton reaches the finishing (accept) state after
"reading" it. "Reading" the string is done one symbol at a
time and using the transition function determine what the
next state will be. If the automaton is not in an accept state
at the end, the string gets declined. Finite automata can be
divided into two subgroups. Automata can be
either deterministic (DFA) or nondeterministic (NFA). DFA
is deterministic; meaning the transition from one state to
another is unique. In NFA transition in the automaton can
go from one state to several different states by "reading"
only one symbol. finite automata is usually represented by
a directed graph where arrows represent the transition
function.

There are two commonly used algorithms for pattern
matching:

 Knuth-Morris-Pratt (KMP)
 Boyer-Moore (BM)

Both the algorithms make use of similar method. The
complexity of the algorithms take linear time: O(m + n)
where m is the length of the string, and n is the length of
the file. The main drawback of these algorithms is that they
just check whether certain characters are equal or unequal.
No arithmetic operation is performed.

Boyer-Moore is a little faster, but more complicated.
Knuth-Morris-Pratt is simpler.

Finite state machines

A finite state machine (FSM) is used for representing
a language . A language L is a set of strings. If the strings

http://en.wikipedia.org/wiki/Deterministic_finite_automaton
http://en.wikipedia.org/wiki/Nondeterministic_finite_automaton
https://www.ics.uci.edu/~eppstein/161/people.html#boyer
https://www.ics.uci.edu/~eppstein/161/people.html#moore

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 10 | Oct -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1296

are accepted by the FSM then the language is for the
automation. We can write L(M), Where M is the FSM.

Algorithm

We represent the language as the set of those
strings accepted by some program. Once we find the right
machine, we can test whether a given string matches just
by running the program.

In KMP algorithm first the pattern is turned into a machine,
then run the machine. The most important and difficult
part of KMP is finding the machine.

We need some restrictions on what we mean by "program".
This is where "deterministic & finite" come from.

One way of thinking about it, is in terms of programs
without any variables. All such a program can do is look at
each incoming character determine what line to go to, and
eventually return true or false (depending on whether it
thinks the string matches or doesn't).

A program for testing whether a string has an even
number of characters.

 main()
 {
 for (;;) {
 if (getchar() == EOF) return TRUE;
 if (getchar() == EOF) return FALSE;
 }
 }
There are no variables in the above program. We can avoid
complicated loops, and use goto statements.
 main()
 { even:
 if (getchar() == EOF) return TRUE;
 else goto odd;
 odd:
 if (getchar() == EOF) return FALSE;
 else goto even;
 }

As there are no variables, we can only represent
knowledge about the input in terms of where we are in the
program. We think of each line in the program as being
a state, representing some specific fact about the part of
the string we've seen so far. Here the states are "even" and
"odd".

Since there are no variables, the only thing a machine can
do in a given state is to go to different states, depending on
what character it sees.

The program can be represented using State transition
diagrams. A circle will represent a state, an arrow with a
label will represent that we go to that state if we see that
character. It is a special kind of graph. The start state is also
indicated with arrow from nowhere. The program returns
true if the string ends at that state. So our program can be
represented with the following diagram.

Fig -1: State transition diagram for testing whether a

string has an even number of characters

Fig -2: State transition diagram for identifying
comments in a c program.

If we're given such a diagram, and a string, we can easily
see whether the corresponding program returns true or
false. Simply place a marker on the initial state, and move
it around one state at a time until you run out of characters.
Once you run out of characters, see whether the state
you're in has an "accept" arrow -- if so, the pattern
matches, and if not it doesn't. In a computer, we can use
any of the normal graph representations to store them.
One particularly useful representation is a transition
table: we make a table with rows indexed by states, and
columns indexed by possible input characters. Then
simulating the machine can be done simply by looking up
each new step in the table. (You also need to store
separately the start and accept states.) For the machine
above that tests whether a string has even length, the table
might look like this:

https://www.ics.uci.edu/~eppstein/161/960201.html#rep

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 10 | Oct -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1297

Table -1: Transition table for determining whether
a string has even length or odd length.

States/input any

odd even

even odd

Table -2: Transition table for the C comment

machine.

Since a state diagram is just a kind of graph, we can use
graph algorithms to find some information about finite
state machines. For instance we can simplify them by
eliminating unreachable states, or find the shortest path
through the diagram.

Automata and string matching

If we want to match "automata". Rather than just starting
to write states down, let's think about what we want them
to mean. At each step, we want to store in the current state
the information we need about the string seen so far. Say
the string seen so far is "...stuvwxy", then we need to know
two things:

1. Have we already matched the string we're looking for

("auto")?
2. If not, could we possibly be in the middle of a match?

If we're in the middle of a match, we need to know how
much of "mata" we've already seen.

Depending on the characters we haven't seen yet, there
may be more than one match that we could be in the
middle.

So we want our states to be partial matches to the pattern.
The possible partial matches to "memo" are "", "m", "me",
"mem", or (the complete match) "memo" itself. In other
words, they're just the prefixes of the string. In general, if
the pattern has m characters, we need m+1 states; here
m=4 and there are five states.
The start and accept states are obvious: they are just the 0-
and m-character prefixes.

In general the transition from state+character to state is
the longest string that's simultanously a prefix of the
original pattern and a suffix of the state+character we've
just seen. This is enough to tell us what all the transitions
should be. If we're looking for pattern "memo", the
transition table would be:

Table -3: Transition table for the pattern “memo”.

States
/input

m e o other

empty "m" empty empty empty

"m" "m” "me" empty empty

"me" "mem" empty empty empty

"mem" "m" "me" "memo" empty

"memo" "memo" "memo" "memo" "memo"

For instance the entry in row "mem" and column ‘o’ says
that the largest string that's simultaneously a prefix of
"memo" and a suffix of "mem"+o="memo" is simply "o". We
can also represent this as a state diagram:

Fig -3: State transition diagram for the pattern
“memo”.

Simulating this on the string "bananamemo", we get the
sequence of states empty, empty, empty, "m", "me", "mem",
"me", "mem", "memo", "memo", "memo". Since we end in
state "memo", this string contains "memo" in it
somewhere. By paying more careful attention to when we
first entered state "memo", we can tell exactly where it
occurs; it is also possible to modify the machine slightly
and find all occurrences of the substring rather than just
the first occurrence.

3. EXPERIMENT USING THE STRING “BARBARA”

“barbara” is a fun word. It consists of just three letters (b, a,
r) and has the substring bar repeated twice. Given a
random string of text, how can we determine if barbara
appears in it? The searching algorithms Knuth–Morris–
Pratt, Boyer-Moore and many others may not be enough.
We can make an effective search by constructing a DFA for
it. The DFA will accept a string if and only if it is in an
accept state after "reading" the string. Automaton given on

States/input / * EOL other

empty slash empty empty empty

C++ C++ C++ empty C++

asterisk empty asterisk C C

slash C++ C empty empty

C C asterisk C C

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 10 | Oct -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1298

the graph below will be left in an accept state iff it contains
barbara as a substring. Let's get on with the construction.
In order to detect barbara, we will need 8 states and only
one of them will be an accept state (first seven will be for
checking what precedes what). So, our set Q will be Q = {0,
1, 2, 3, 4, 5, 6, 7}. For the alphabet Σ, we will use the
Standard English alphabet. Strings over Σ are all words that
can be generated using letters of the English alphabet
(labeled as Σ*). The transition function δ is represented by
the arrows on the graph below. Our starting state will be 0,
and accept state set will be F = {7}. Desiging δ is the
hardest part of the process, of course.

The transition function displayed on the graph is the
following:

δ(3, b) = 4; // bar -> barb
δ(6, b) = 4; // barbar -> barb
δ({0, s}, b) = 1; // x -> b
δ(1, a) = 2; // b -> ba
δ(4, a) = 5; // barb -> barba
δ(6, a) = 7; // barbar -> barbara (the end)
δ(s, a) = 0; // x -> ɛ (empty word)
δ(2, r) = 3; // ba -> bar
δ(5, r) = 6; // barba -> barbar
δ(s, r) = 0; // x -> ɛ
δ(s, x) = 0; // x -> ɛ

 s is a variable state not included in the definition

As you can see, the automaton will be in the finishing state
iff it recognizes barbara as a substring. When it gets to the
finishing state, the loop will make it stay there. Let's try it
out and see how it works. For the example, I'll use the
transition function and I'll show you each step. Before that,
I have to state that δ(s, abc) = δ(δ(s, a), bc), meaning that
the word can be broken at any place and we will still get
the same results.

 δ(0, oifsfscnbarbakjkjibarbarabkf) =
 δ(δ(0, oifsfscn), barbakjkjibarbarabkf) =
 δ(0, barbakjkjibarbarabkf) =
 δ(δ(0, bar), bakjkjibarbarabkf) =
 δ(3, bakjkjibarbarabkf) =
 δ(δ(3, ba), kjkjibarbarabkf) =
 δ(5, kjkjibarbarabkf) =
 δ(δ(5, kjkji), barbarabkf) =
 δ(0, barbarabkf) =
 δ(δ(0, barbara), bkf) =
 δ(7, bkf) = 7 which is an accept state.

Fig -3: State transition diagram for identifying
comments Deterministic Finite Automata for

“barbara” Problem.

4. CONCLUSIONS

It is difficult to design pattern matching algorithms, but
Finite automata can be used to match strings and regular
expressions of all kinds. A Finite Automation accepts
regular languages and a language is regular iff it has a
regular expression representing it. The study of formal
grammar and regular expressions has shown us with those
topics the utility, robustness, and sometimes elegance of
regular languages. The same approach can also be applied
to variety of other functional programming languages.
Finally, the use of automata as a symbolic representation
for verification has been investigated in other contexts.
Based on the pattern and its length the size of the Finite
Automata may vary. The Deterministic Finite Automata
possibly constructed from the Nondeterministic Finite
Automata.

REFERENCES

[1] http://en.wikipedia.org/wiki/ Automata_theory

[2] Hopcraft J E, Motwani R and Ullman J D [2001],
"Introduction to Automata Theory, Languages and
Computation", AddisonWesley second edition.

[3] Mindek, M., “Finite State Automata and Image
Recognition” DATESO 2004, pp 132-143 (2004), ISBN: 80-
248-0457-3

[4] G. Navarro, R. Baeza-Yates, “Improving an Algorithm
for Approximate String Matching.”,Algorithmica, 30(4)
2001

[5] M. Crochemore, T. Lecroq, “Pattern Matching and Text
Compression Algorithms”, The Computer Science and
Engineering Handbook, A.B. Tucker, Jr, ed., CRC Press, Boca
Raton, 2003, Chapter 8.

http://en.wikipedia.org/wiki/%20Automata_theory

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 10 | Oct -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1299

[6] D. Perrin, “Finite Automata”, Handbook of Theoretical
Computer Science. Elsevier Science Published 1990.

[7] A.V. Aho and M.J. Corasick. ―Efficient String Matching:
An Aid to Bibliographic Search.‖ Communications of the
ACM, 18(6):333–340, 1975.

[8] S. Kumar, B. Chandrasekaran, J. Turner, G. Varghese,
―Curing regular expressions matching algorithms from
insomnia, amnesia, and acalculia‖, in Proc. ACM/IEEE
Symp. Archit. Netw. Commun. Syst. (ANCS), pages 155-164.
ACM, 2007.

[9] R. Smith, C. Estan, and S. Jha, ―Xfa: Faster signature
matching with extended automata‖, in IEEE Symposium on
Security and Privacy, May 2008.

[10] D.Ficara, S.Giordano, G. Procissi, F.Vitucci, G.Antichi,
A.D. Pietro, ―An Improved DFA for Fast Regular Expression
Matching‖ ACM SIGCOMM Computer Communication
Review, Volume 38, Number 5, October 2008.

[11] https://www.ics.uci.edu/~eppstein/161/960222.html

