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Abstract - In this paper, static response for simply 
supported rectangular functionally graded plate which is 
subjected transverse and sinusoidal load in is studied. The 
generalized shear deformation theory obtained by author in 
recent year. Material properties of rectangular plate are 
supposed to be varying in its thickness direction by using 
power law. The results are compared and validated with 
literature available. Modeling is based on HONST & finite 
element tool ABAQUS. 
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1.INTRODUCTION  
 
In recent years FG materials have gained advantages and 
attention for the use of materials in various engineering 
applications. FG materials are considered as very useful 
material in structural engineering in the field of spacecraft 
industries and power generation industries. FG materials are 
new materials; in which properties of materials are vary 
smoothly along from one face to the other face. By applying 
the many possibilities inherent in the FGM concept, it is 
anticipated that materials will be improved and new 
function for them created.  
 
In simplest FG materials two different material ingredients 
change gradually from one face to the other face. The most 
commonly used FG materials are Metal, Ceramic etc. The 
ceramic in an FGM acts as thermal barrier effects and 
protects the metal from corrosion and oxidation, and the 
FGM is toughened and strengthened by the metallic 
composition. A mixture of ceramic and metal with a 
continuously varying volume fraction can be easily 
manufactured. This eliminates interface problems of 
composite materials and thus the stress distributions are 
smooth. 
 
Several researchers has done the research work in this field 
and they introduced various theories. Sankar (1) presented 
an elasticity solution for a functionally graded beam 
subjected to transverse loads. Chakraborty et al. (7) 
developed new beam element to study the thermoelastic 
behavior of functionally graded beam structures. Zenkur (4) 
discussed two dimensional solutions for bending analysis of 
simply supported functionally graded ceramic metal 
sandwich plates. Zenkur (5) presented the static response 
for a simply supported functionally graded rectangular plate 

subjected to a transverse uniform load. The generalized 
shear deformation theory obtained by the author in other 
recent papers is used. This theory is simplified by enforcing 
traction-free boundary conditions at the plate faces. The 
equilibrium equations of a functionally graded plate are 
given based on a generalized shear deformation plate theory. 
The numerical illustrations concern bending response of 
functionally graded rectangular plates with two constituent 
materials. The influences played by transversal shear 
deformation, plate aspect ratio, side-to-thickness ratio, and 
volume fraction distributions are studied. The results are 
verified with the known results in the literature.        
 
Bhangale et al. (6) studied buckling and vibration behavior 
of a functionally graded material (FGM) sandwich beam 
having constrained viscoelastic layer (VEL) is studied in 
thermal environment by using finite element formulation. 
The FGM sandwich beam is assumed to be clamped on both 
edges. The material properties of FGM are functionally 
graded in thickness direction according to volume fraction 
power law distribution. Temperature dependent material 
properties of FGM stiff layer and shear modulus of 
viscoelastic layer are considered to carry out buckling and 
vibration analysis.  
 
Kadoli (9) studied displacement field based on higher order 
shear deformation theory is implemented to study the static 
behavior of functionally graded metal–ceramic (FGM) beams 
under ambient temperature. Using  the principle of 
stationary potential energy, the finite element form of static 
equilibrium equation for FGM beam is presented. Numerical 
results on the transverse deflection, axial and shear stresses 
in a moderately thick FGM beam under uniform distributed 
load for clamped–clamped and simply supported boundary 
conditions are discussed in depth. The effect of power law 
exponent for various combination of metal–ceramic FGM 
beam on the deflection and stresses are also commented. 
The studies reveal that, depending on whether the loading is 
on the ceramic rich face or metal rich face of the beam, the 
static deflection and the static stresses in the beam do not 
remain the same. Sina (16) developed new beam theory 
different from the traditional first-order shear deformation 
beam theory is used to analyze free vibration of functionally 
graded beams. HenniAbdelaziz (11) performed a new 
displacement based high order shear deformation theory for 
static response of functionally graded sandwich plates. 
Unlike other theory, number of unknown functions involved 
is only four, as against five in case of other shear 
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deformation theories. The theory presented is variationally 
consistent, has strong similarities with classical plate theory 
in many aspects. In this theory governing equations are 
derived from principle of virtual work. The closed form 
solution of simply supported rectangular plate subjected to 
sinusoidal loading has been obtained by using Navier 
method and validation of present theory is performed by 
comparing some of the present results with the classical 

theory. 
 
Sobhy (15) described the vibration and buckling behavior of 
exponentially graded material (EGM) sandwich plate resting 
on elastic foundations under various boundary conditions. 
Swaminathan et al. (13) presented a comprehensive review 
of the various methods employed to study the static, 
dynamic and stability behavior of Functionally Graded 
Material (FGM) plates. Both analytical and numerical 
methods are considered. The review is carried out with an 
emphasis to present stress, vibration and buckling 
characteristics of FGM plates predicted using different 
theories proposed by several researchers without 
considering the detailed mathematical implication of various 
methodologies. The main objective of this paper is to serve 
the interests of researchers and engineers already involved 
in the analysis and design of FGM structures. 
 
The FGM plate is made of an isotropic material with material 
properties varying in the thickness direction only. To make 
the study reasonably, displacements are given for different 
homogenization schemes and exponents in the power law 
that describes through-the-thickness variation of the 
constituents. 
 

1.1 Matehmatical Model 
 
Consider a solid rectangular plate of length a, width b and 
thickness h made up of FG materials as shown in above 
figure 1.  
 

 
 
 
 

 
 
 
 
 
  

Figure 1. Geometry of rectangular plate 

 
1.2 Calculation of Material Properties 
 
The materials properties of rectangular plate such as 
Young’s Modulus is assumed to be the function of volume 
fraction constituents. The rectangular Cartesian planform co-

ordinates x and y are introduced in the deformation analysis 
of the present plate. The considered plate is bounded by the 
co-ordinate planes x = 0 ,a and y = 0 ,b. The reference surface 
is the middle surface of the plate defined by z = 0, and z 
denotes the thickness co-ordinate measured from the un-
deformed middle surface. The functional relationship 
between E and z for ceramic and metal FGM plate is assumed 
as Other font types may be used if needed for special 
purposes. 

E(Z) = Ec + Em x V 

Where 
2

2

K
z h

V
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 
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Where Ec = Young’s Modulus for ceramic and Em  = Young’s 
Modulus for metal respectively, K is the volume fraction 
exponent which has values greater than or equals to zero. 
The value of K equals to zero represents the plate is fully 
ceramic. The above power law will helps for the mixture of 
materials. The variation of material along the thickness of 
the plate is shown in above figure no2. 

 
 

Figure 2.Variation in Material in FGM Plate 

 
2. Formulation of HONST 
 
2.1 Equations of equilibriums are  
 
The following differential equations of equilibrium are 
obtained from the classical theory of elasticity in Cartesian 
coordinate system (x, y and z) 
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where 

xB , 
yB  and 

zB  are the body forces along x, y and z 

directions respectively. 
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2.1 Strain-displacement relations  
 
From linear theory of elasticity, the general strain-
displacement relationships for small displacements can be 
stated as under. 
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2.2 Constitutive relations 
 
Principal material coordinate system (1-2-3) is used for the 
stress-strain relationship of fiber-reinforced composites. The 
axis 1 is aligned with the fiber direction, the axis 2 is 
perpendicular to the fibers but in the plane of the layer, and 
axis 3 is perpendicular to the fibers as well as to plane of 
layer. The stress strain relationship in 1-2-3 coordinate 
system is as per the following form. 
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(3) 

 
The above relationship for Lth orthotropic elastic layer can be 
written in a matrix form as 
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Using Maxwell-Betti reciprocal theorem, there are only 9 
independent elastic properties with following relationships. 
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The 3D stress-strain constitutive relationship with 
stiffness matrix [C] for Lth lamina w. r. t. 1.2.3 can be written 
as: 
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In which this equation can be written as – 
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following elastic constants are defined for isotropic layer.  
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where,   and G are Lame’s constants.  

 
In the laminate coordinate system (x-y-z) the stress strain 

relationship for  Lth lamina can be written as 
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where  , , , , ,     x y z xy yz xz  are the stresses and 

 , , , , ,     x y z xy yz xz  are the strains with respect to laminate 

coordinate system (x-y-z). 
ijQ are transformed elastic 

constants or stiffness matrix and defined as per the following. 
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and ij jiQ Q , i, j = 1 to 6, where, c = cos(α) and s = sin(α)is 

the angle made by fiber direction to x-axis. 
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2.3 Displacement Fields 
 
In order to approximate the 3D elasticity problem to a 2D 
plate problem, the displacement components u(x, y, z), v (x, y, 
z) and w(x, y, z) at any point in the plate space are expanded 
in a Taylor series in terms of thickness coordinate z, viz., 
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2.4 Displacement Model 
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2.5 Governing Equations  
 

Using the principle of minimum potential energy, which 
derives the equation of equilibrium. In analytical form it can 
be written as, 

( ) 0  U V     (13) 

where U is the total strain energy due to deformation, V is 
the potential of the external loads and U+V=   is the total 

potential energy and  is the variational symbol. Substituting 

the appropriate energy expressions in the above equation, 
the final expression can be written as, 
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Where the stress resultants in terms are defined by 
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3. Results and Discussions 
 
In this paper FGM simply supported rectangular plate is 
studied subjected uniform and sinusoidal loading. 
Dimensions of the plate are a= 1000, b=1000 and h=100 is 
considered and calculated by using aspect ratio a/h=10. 
 
Now, a functionally graded material consisting of aluminum 
and alumina is considered. Young_s modulus for aluminum is 
70GPa while for alumina is 380GPa. Note that, Poisson’s ratio 
is selected constant for both and equal to 0.3. The non-
dimensional displacement parameters are calculated by 
using the following relations – 
 

3

4
0

10
,

2 2
ch E W a b

W
a q

  
  

 
    (17) 
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Above table shows comparison between results for plates 
subjected to uniform or sinusoidal distributed loads, 
respectively. As it is well known, the uniform load 
distribution always overpredicts the displacements. As the 
plate becomes more and more metallic, the difference 
increases for deflection w. In above table no.1 the non 
dimensionless displacements of FGM simply supported 
rectangular plates subjected to uniform loading and non 
dimensionless displacements of FGM simply supported 
rectangular plates subjected to uniform loading are given – 
 
Table No. 1 Non-Dimensional transverse displacement for 

S-S FGM Plate under uniformly distributed loading and 
Sinusoidal loading. 

 

K Loading Lit.(5) 
Present 
Values 

Ceramic 
UL 0.4665 0.4636 

SL 0.2960 0.2926 

1 
UL 0.9287 0.9382 

SL 0.5889 0.5920 

2 
UL 1.1940 1.1973 

SL 0.7573 0.7558 

3 
UL 1.3200 1.3235 

SL 0.8377 0.8356 

4 
UL 1.389 1.3927 

SL 0.8819 0.8793 

5 
UL 1.4356 1.4383 

SL 0.9118 0.9085 

6 
UL 1.4727 1.4728 

SL 0.9356 0.9306 

7 
UL 1.5049 1.5017 

SL 0.9562 0.9317 

8 
UL 1.5343 1.5276 

SL 0.9750 0.9652 

9 
UL 1.5617 1.5511 

SL 0.9925 0.9800 

10 
UL 1.5876 1.57244 

SL 1.0089 0.9937 

Metal 
UL 2.5327 2.54448 

SL 1.6070 1.6404 

 
 
 

 

 
Figure 3. Comparison between Lit. (5)  & Present Results 
for Non-Dimensional transverse displacement S/S FGM 
Plate under uniformly distributed loading & Sinusoidal 

loading. 
 

 
 

Figure 4. Non-Dimensional transverse displacement for S-
S FGM Plate under uniformly Sinusoidal loading for metal 

plate. 
 

 
 

Figure 5. Non-Dimensional transverse displacement for S-
S FGM Plate under uniformly Sinusoidal loading for P=8 

plate. 
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Conclusion – 
 
The static response of FGM plate is studied using this 
HONST. This HONST results shows good validation for the 
results available in the literature. The displacement response 
of rectangular plate under uniform and sinusoidal loading is 
studied. Non dimensional displacements for FGM 
rectangular plate are computed. From the results it is seen 
that non dimensional vertical displacement of FGM plate 
goes on increasing for both uniform loading and sinusoidal 
loading as per the power law distribution. Thus it shows that 
the gradients in Material properties plays very important 
role. 
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