‘,/ International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

JET Volume: 04 Issue: 01 | Jan -2017

www.irjet.net

p-ISSN: 2395-0072

A comparative Study of Sorting Algorithms

Comb, Cocktail and Counting Sorting

Ahmad H. Elkahlout!?, Ashraf Y. A. Maghari2.

1 Faculty of Information Technology, Islamic University of Gaza - Palestine
2Faculty of Information Technology, Islamic University of Gaza - Palestine

Abstract —The sorting algorithms problem is probably one
of the most famous problems that used in abroad variety of
application. There are many techniques to solve the sorting
problem. In this paper, we conduct a comparative study to
evaluate the performance of three algorithms; comb, cocktail
and count sorting algorithms in terms of execution time. Java
programing is used to implement the algorithms using
numeric data on the same platform conditions. Among the
three algorithms, we found out that the cocktail algorithm has
the shortest execution time; while counting sort comes in the
second order. Furthermore, Comb comes in the last order in
term of execution time. Future effort will investigate the
memory space complexity.

Key Words: Sorting, Comb, Cocktail, Counting,
Algorithm, Comparison, Experimental.

1. Introduction

Sorting algorithm is the process of placing elements from a
collection in some kind of order. For example, a list of words
could be sorted alphabetically or by length. A list of cities
could be sorted by population, by area, or by zip code[1] .
The most-used orders are numerical order and
lexicographical order [2]. The sorting is a problem of central
importance both in theoretical and practical computing
[3].Efficient sorting is important for optimizing the use of
other algorithms such as search and merge algorithms
which require input data to be in sorted lists. Further, the
data is often taken to be in an array, which allows random
access, rather than a list, which only allows sequential
access. The sorting n algorithms can be applied with suitable
modification to either type of data. Since the dawn of
computing, the sorting problem has attracted a great deal of
research, perhaps due to the complexity of solving it
efficiently despite its simple, familiar statement. We have
already seen a number of algorithms that were able to sort
unsorted list by different ways and solve the sorting
problem. Computer sorting algorithms can be classified into
two categories; comparison-based sorting and non-
comparison-based sorting. The purpose of this study is
making experimental comparison between three sorting
algorithm Comb, Cocktail and Counting Sort to determine
experimentally which one is the fastest in term of execution
time. Three sorting algorithms are implemented using by

java programming language, in which every algorithm sort
the same set of random numeric data. Then the execution
time during the sorting process is measured for each
algorithm.

The rest part of this paper is organized as follows. Section 2
gives a background of the three algorithms; comb, count, and
cocktail algorithms. In section 3, related work is presented.
Section4 comparison between the algorithms; section 5
discusses the results obtained from the evaluation of sorting
techniques considered. The paper is concluded in section 6.

2. Background

2.1. Comb Sort

Comb sort is an enhanced version from bubble sort and
rediscovered by Stephen Lacey and Richard Boxin 1991. [9].
Comb Sort is mainly an improvement over Bubble Sort.
Bubble sort always compares adjacent values. So,
all inversions are removed one by one. Comb Sort improves
on Bubble Sort by using gap of size more than 1. The gap
starts with a large value and shrinks by a factor of 1.3 in
every iteration shown in figure 2 until it reaches the value 1.
Thus, Comb Sort removes more than oneinversion
counts with one swap and performs better than Bubble Sort.
Figure 1 shows how Comb sorting algorithm works. In
average it works better than Bubble Sort. Its worst case,
however, remains O(n?).

[sT3JulsJw]e[7]a]r]iz]o]4]

[n[sJwle[7 2] r]o]s5]

v
4

’sl }]
1

¥ ¥ Y ¥
[3Jo]sJw[e[7]2]e]rz]uls]

£

@

[1]2JalsJwle]7[3]o]r[un]s]

-]
&

[PT2TaT]s]ofe]7]sw]rz]u]s]

o

v v ¥
[DJz2TJals]sJe]7]esz]ufmw]

=

[DJz2Tals]sJe]7]eswo]u]

]

T — T — 4T — 47— 47— +T— -
s &

[P]2]3]a]s[se]7]sJofo]ui]

Figure 1: Comb sort

© 2017,IRJET | ImpactFactor value:5.181 |

IS0 9001:2008 Certified Journal |

Page 1387

‘,/ International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

JET Volume: 04 Issue: 01 | Jan -2017 www.irjet.net p-ISSN: 2395-0072
function comb sort(array input. int size) procedure cocktail Sort(A : list of sortable items) defined as: do
gap + size swapped < false
shrink« 1.3 ifA[i] > A[i+ 1] then

swap(A[i]. A[i+1])

loop until gap = 1 and swapped =true swapped true

gap < int(gap / shrink) endif
ifgap<1 end for
gap=1 if swapped = false then
endif breal;t?;}-whileloop
. endl
<0 swapped « false
swapped « false for eachi = length(A) - 1to 0 do:
loop untili »=size - gap ifA[i]>A[i+1]then
if input[i] > input[i+gap] swap(A[i]. A[i+1])
swap(input[i], input[i+gap]) SW:::;d i=true
swapped « true end for
endif while swapped
ieitl end procedure
end loop
end loop
end function

Figure 4: Pseudo code: Cocktail Algorithm

Figure 2: Pseudo code: comb Algorithm

2.3. Counting Sort:

Counting sort is an algorithm for sorting a collection of
objects according to keys that are small integers. Figure 5
shows a pseudo code for the counting sort. [t operates by
counting the number of objects that have distinct key
value, and using arithmetic on those counts to determine
the positions of each key value in the output sequence [5].
An important property of counting sort is that it is stable:
numbers with the same value appear in the output array
in the same order as they do in the input array as shown
in Figure 6. That is, it breaks ties between two numbers by
the rule that whichever number appears first in the input
array it also appears first in the output array. Normally,
the property of stability is important only when satellite
data are carried around with the element being sorted.
Counting sort’s stability is important for another reason:
counting sort is often used as a subroutine in radix sort, in
order for radix sort to work correctly, counting sort must

Cocktail Sort be stable [3].

2.2. Cocktail Sort:

Cocktail sort is similar to the bubble sort in which both are
even and comparison-based sorting algorithms as shown in
Figure 4. The Cocktail algorithm differs from a bubble sortin
that it sorts in both directions on each pass through the list
as shown in Figure 3. This sorting algorithm is more difficult
to implement than the bubble sort [4]. The first rightward
pass will shift the largest element to its correct place at the
end, and the following leftward pass will shift the smallest
element to its correct place at the beginning. The second
complete pass will shift the second largest and second
smallest elements to their correct places, and so on.

Counting-Sort(A, B, k)
LetC[0....k] be a new array
Loop1land3
for i=0 to k [Loop 1] takes O(k) time
Cli]=0;
for j=1to Alength orn [Loop 2]
CIA[IT=C[A[j]]] +1;
fori=1 tok [Loop 3]
C[i] = C[i] + C[i-1];
for j=n or Alengthdownto1 [Loop 4]
10. BI CI A[]]]] = A[i]; Loop Z and 4
11 C[A[]] =ClA[]] -1; s i

Pass 2

W EN e WN R

Figure 3: cocktail sort

Figure 5: pseudo code: counting sort

© 2017,IRJET | ImpactFactor value: 5.181 | 1SO09001:2008 Certified Journal | Page 1388

‘[, International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

JET Volume: 04 Issue: 01 | Jan -2017

www.irjet.net

p-ISSN: 2395-0072

12345678

012345

AOBE0D _ e RBNGED
+ 4+
(a) (b (c)
12345678 12345678
sIVEENCE EEEGEE s
0123 435 0123 435 nn
C|1(2|4|6(7|8 Cl1(2(4]|5(7]|8

() () (0]

Figure 6: Counting sort

3. Related work

Computer sorting algorithms can be classified into two
categories, comparison-based and non-comparison-based
sorting. In recent years, some improved algorithms have
been proposed to speed up comparison-based sorting
algorithms, such as advanced quick sort according to data
distribution characteristics [6]. Mishra, A.D. and Garg, D. [3]
reported that the execution of any counting or computation
refers to the sorting algorithm performance. Like any
computational problem, similar results are given from many
solutions. In [7], the author evaluates the performance of
three algorithms; insertion, selection, and bubble sorting
algorithms. Their work is evaluated in terms of CPU
execution time and memory space. The most efficient
algorithm was the insertion sort. Selection sort came in the
second order and in the last order came the bubble sort.
Khalid Suleiman Al-Kharabsheh [9][10] et al. suggested a
GCS (Grouping Comparison Sorting) algorithm which makes
further comparison with others conventional sorting

algorithms like Bubble sort, Merge sort, Insertion sort,
Quick sort and Selection sort, to show how these algorithms
reduce time of execution.

Our work, however, is different in the context that the
experimental comparison is conducted between three
sorting algorithms; Comb, Cocktail and Counting Sortin
term of execution time.

4. Experimental Result

In our experiments, the three sorting algorithms have
been implemented using Java programming. Then, time
measuring method is developed to determine the
execution time for each algorithm. A set of random
numeric data is between 10 and 3000. The algorithms
were implemented in Java-language. These were run on
Intel core (R) i5-2410m, CPU 20.30GHz, RAM 4 G,

© 2017,IRJET | ImpactFactor value: 5.181 |

operating system windows 7 64bt. Table 2 shows the CPU
execution time for the three algorithms. We use numeric
data between 10 and 3000. Figure 7 shows a graphical
representation of the execution time of the three
algorithms. The results demonstrate that the cocktail
algorithms have the shortest execution time; while
counting sort comes in the second order. Furthermore
comb comes in the last order in term of execution time.

Table 1: Execution time measured with CPU with various
data

Procession Time

Counting

Comb Cocktail

15

53

99
190
370
550
750
850
950

3000

Average

Comp

Time CPU Cocktail

Counting

15 100 500 1000 2000 3000

Element

Figure 7: CPU Time vs. Data Size

Table 2: running time for Comb, Cocktail and Counting

Algorithm | Average case | Worstcase | Bestcase
Cocktail 0(n2) 0(n2) o(n)
Count 0(n+k) 0(n+k) 0(n+k)
Comb 0(n2) 0(n2) 0O(nlogn)
ISO 9001:2008 Certified Journal | Page 1389

’,/ International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

JET Volume: 04 Issue: 01 | Jan -2017

www.irjet.net

p-ISSN: 2395-0072

5. Discussion

This section presents the discussion of results obtained from
evaluation of comb, cocktail, and count sort algorithms.
Cocktail have variation from comb sort and count sort in
which it passes alternately from bottom to top and then from
top to bottom [8]. It can achieve slightly better performance
than count and comb sort. The reason for this is that comb
and count only passes through the list in one direction.

6. Conclusion

We have evaluated the performance of comb, cocktail, and
count sort techniques using CPU time. This was achieved by
reviewing literatures of relevant works. We also formulated
architectural model which serves as guideline for
implementing and evaluating the sorting techniques. The
techniques were implemented with Java language. Empirical
results were tabulated and graphically presented. The
results obtained show that in majority of the cases
considered, cocktail sort technique is faster. While counting
sort comes in the second order and Comb comes in the last
order in term of execution time. Future efforts should be
made to compare the memory usage of sorting algorithms.

7. References

1. Huang, Z., S. Kannan, and S. Khanna. Algorithms for the
generalized sorting problem. in Foundations of
Computer Science (FOCS), 2011 IEEE 52nd Annual
Symposium on. 2011. IEEE.

2. Demuth, H.B., Electronic data sorting. IEEE transactions
on computers, 1985. 100(4): p. 296-310.

3. Mishra, A.D. and D. Garg, Selection of best sorting
algorithm. International Journal of Intelligent
Information Processing, 2008. 2(2): p. 363-368.

4. Cormen, T.H,, et al., Introduction to algorithms. Vol. 6.
2001: MIT press Cambridge.

5. Adhikari, P., Review On Sorting Algorithms A
comparative study on two sorting algorithms.
Mississippi State, Mississippi, 2007. 4.

6. Horsmalahti, P., Comparison of Bucket Sort and RADIX
Sort. arXiv preprint arXiv:1206.3511, 2012.

7. Aremu, D, et al., A Comparative Study of Sorting
Algorithms. African Journal of Computing & ICT, 2013.
6(5).

8. Cunningham, J.G., et al. Methods for identifying
systematic differential reflectivity (ZDR) biases on the
operational WSR-88D network. in 36th Conference on
Radar Meteorology. 2013.

9. Khalid Suleiman Al-Kharabsheh, Ibrahim Mahmoud
AlTurani, Abdallah Mahmoud Ibrahim AlTurani, and
Nabeel Imhammed Zanoon, “Review on Sorting
Algorithms A Comparative Study”, International Journal
of Computer Science and Security (1JCSS), Vol. 7, No. 3,
2013

10. 1. trini, k. kharabsheh, and A. trini, "Grouping
Comparison Sort", Australian Journal of Basic and
Applied Sciences, pp. 221-228, May 2016.

BIOGRAPHIES

Mr. Ahmad H. Elkahlout is
the corresponding author of
this paper and a master student
at the Faculty of Information
Technology, Islamic University
of Gaza, Palestine.

Phone Number: +97299604246
e-mail: a_h kB0@hotmaill.com

© 2017,IRJET | ImpactFactor value:5.181 |

IS0 9001:2008 Certified Journal |

Page 1390

