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Abstract— We study the nonlinear dynamics of anharmonic 

oscillations in a carbon nanotube (CNT). The problem consists 

of solving a perturbation Hamiltonian using Brenner potential. 

A dispersion relation has been obtained, which predicts the 

formation of discrete breather below a lower frequency limit. 

Equations of motion in cylindrical coordinates predict that 

spatially localized nonlinear modes may exist in the form of 

discrete breathers.  The mathematical model takes into 

consideration the chiralities of CNT. As in earlier studies 

twisting breathers have been found to exist. 
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1.Introduction  

C arbon nanotubes were synthesised  by thermal 

decomposition of carbon oxide by Iijma[1]. Obtained as a by-

product of the synthesis of fullerene C60, their unique 

properties make them a good candidate for a wide range of 

applications due to their unique physical properties which 

are experimentally verified [2]. They are found to exhibit 

superior mechanical strength [3] and better heat 

conductance[4]. In addition, C60 fullerene is found to support 

large amplitude oscillations[5]. Such oscillations are excited 

and controlled by laser pulses[6]. These are macromolecules 

having cylindrical geometry and diameter having of the 

order of a nanometer and length of the order of several 

microns.  

 It was observed by Anderson that localized 

oscillations may take place due to defects in crystal lattices. 

This phenomenon is known as Anderson localization. 

However, Ovehimnikov, Takeno and Sievers [7,8] observed 

that intrinsic localized modes are found in perfectly periodic 

but strongly nonlinear systems. These were called discrete 

breathers. 

The discrete breather (DB) excitations have been 

observed in a large variety of lattice systems, in lattice 

vibrations and spin excitations, in molecules and and charge 

flow in coupled Josephson junctions, in light propagation in 

interacting optical waveguides[9], cantilever vibrations in 

micromechanical arrays, in Bose-Einstein condensates and 

cold atom dynamics in optical lattices, in composite 

metamaterials, in nonlinear protein molecules etc. 

Particularly, large-amplitude oscillations of discrete 

breathers in nanotubes with chiralities (m,0) and (m,m) have 

been observed by Savin and Kivshar[10]. They predict the 

existence of spatially localized nonlinear modes in the form 

of discrete breathers which may be in the form of 

longitudinal, radial and torsion anharmonic vibrations. 

However, they found that only the twisting breathers are 

actually the nonradiating nonlinear modes. 

       We carry out a phase plane analysis of discrete 

breathers. An analysis of resulting exact equations is carried 

out so as to determine the existence and stability of different 

types of breathers. 

2   THE STRUCTURE OF CARBON NANOTUBE 

(CNT) 

We consider a carbon nanotube (CNT) with chirality 

( , )m m . The  nanotube is characterized by its radius r and 

longitudinal dimension  z. There are two layers of nanotube. 

Each layer has m atoms separated by angular distance.  Each 

atom of CNT is characterized by a set of indices ( , , )i j k where  

( , )i j  defines an elementary cell : 0,1,2,...i ; k  defines the 

atom number of the cell: k=0,1. The geometrical model 

follows from [10]. 

3     MATHEMATICAL MODEL 

In this paper, we apply an extended Brenner bond order 

dependent potential, following the empirical equations 

derived in to the calculation of fullerene and nanotube 

properties. The implementation of long-range interactions in 

this potential allows the consistent treatment of all types of 
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long-range nonbond non- bonding interactions.  Binding 

energy in Abell-Tersoff [13,14] formalism is given as 
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where ( )( )e
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r R   , ( )e

ij
D is the well depth, ( )e

ij
R is the 

equilibrium distance ,  ij are the Morse parameters.

 

Here, i  is the atom site, j is the nearest neighbor of atom 

i ,
i
E  is the contribution due to each atom site, 

R
V and

A
V  

are respectively the pair additive repulsive and attractive 

interactions. 
ij
B represent many body coupling between 

the bond from atom i   to atom j . For diamond and 

graphite,  it can be written as  ( ) / 2
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is the local coordination number 

depending on the orientation of bonds and  depends on  

the particular system. 
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  The lattice parameters are as follows[11] 
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We transform the coordinates from the cartesian 

coordinates ( , , )x y z to the radial coordinates ( , , )
i i i
r z . We 

consider a plane wave propagating along the z axis 
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 The Hamiltonian for the problem takes the following form 
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The prime indicates differentiation with respect to time. 

The potential term can be simplified using specific values 

of constants  in the empirical relations Eq.(1)-(4): 
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where 
1

, , ,D g s k and  are constants. 

For slowly varying envelope approximation, we obtain the 

dispersion for the longitudinal phonons, 
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Fig.1: Dispersion curves for (a) longitudinal modes (soli 
line),  

(b) radial modes(dash) and (c) torsion oscillations (dash-
dot) 

3.1   Discrete Breathers 

For 
1i i

r r r


  , 
1i i

  


  and 
1i i

z z z


   we obtain the 

localized nonlinear modes of longitudinal oscillations 
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shown in Fig. 2.            

 

Fig.2: (a) Transverse nonlinear breathing mode, (b) 
twisting breather and (c) longitudinal breathing 
modes.                                          

Table 1: Displacements of CNT due to Anharmonic and 
Brenner Potential 

Chirality Transverse  

(ri) 

Torsion  

(φi) 

 

Longitudinal  

(zi) 

 

(m,0) Radial long 

lived nonlinear 

modes can 

appear 

[560, 585] cm-1 

Twisting 

breathers 

due to  

Brenner 

Potential 

[1140, 

1640] cm-

1 

Exact 

nonlinear 

modes 

(planar) 

[1160, 1205] 

cm-1 

 

(m,m) Radial long 

lived nonlinear 

modes can 

appear in 

window 

[430.5, 436] cm-

1 

(Not exact 

solutions. 

Radiation leads 

to decay). 

 

 

 

 

 

 

4    PHASE PLANE ANALYSIS 

We solve the Hamiltonian for the equations of motion in 

( , , )
i i i
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The prime indicates differentiation with respect to time. 

We assume  

,
i
r R   and z Z so that we obtain the equations in 

the following form: 
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We obtain a system of the following three nonlinear 

autonomous equations 
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  A phase plane analysis of the above set of equations 

shows the following results: 

1. The Hamiltonian, Eq.(6), is derived using the Brenner 
empirical potential and classical mechanics.  It helps 
us to obtain the dispersion relation to carry out the 
nonlinear dynamics. The results obtained are  similar 
to the case of diatomic lattices and as obtained in [10] 
with slight cnange in the cut-off frequency. The 

(c) 

(b) (a) 
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improved results, shown in Table 1, predict the 
existence of discrete breathers  with the frequencies 
below the lowest frequency of the longitudinal 
phonons.  

2. The breathers are studied numerically by drawing 
phase plane trajectories. The 3D plot of breather form 
is shown in Fig. 1. The breather frequency is inside the 
band [1160, 1205] cm−1 near the lowest edge of the 
longitudinal optical oscillations. As the angular 
frequency ω is decreased, both the energy and  and 
amplitude grow monotonically, and the breather 
width decreases.  

3. The equations of motion have been obtained in 
cylindrical coordinates by canonical method from the 
Hamiltonian (6). These  equations have been studied 
numerically, drawing the phase plane curves. It was 
observed  that these equations support three types of 
strongly localized nonlinear modes – discrete 
breathers: 

(i) The first type  are the radial breathers, These 
trajectories describe transverse localized nonlinear 
modes with the frequency band [560, 585] cm−1. The 
evolution curve for radial breather has been shown in 
Fig. 1(a). The lifetime of these breathers can be of the 
order of several nanoseconds. 

(ii) The second type of breathers are the twisting 
breathers.These are have the charactistics  of  
localized  torsion oscillations of the nanotube with the 
frequency spectrum, [1440, 1640] cm−1 using  the 
Brenner potential and are associated with the torsion 
oscillations of the nanotube. These breathers have 
wider the frequency spectra of the breathers. The 
evolution curve is as per Fig. 1(b). The twisting 
breathers are associated with the torsion oscillations 
of the nanotube. In a sharp contrast to other two 
breathing modes, the twisting breather is an exact 
solution of the motion equations of the nanotube, and 
it does not radiae phonons. An example of this 
genuine discrete breather is shown in fig. 4. These 
oscillations are stable and have the largest frequency 
spectrum. 

(iii) The third type of breathers is called the 
longitudinal breathers. They exist in planar carbon 
structures, such breathers exist in the frequency range 
[1160, 1205] cm−1. Fig. 1(c) shows the respective 
evolution curve. The longitudinal breathers become 
coupled to the transverse phonon modes. They do not 
have a finite lifetime and therefore they have localized 
discrete modes associated with the energy self-
rapping of torsion oscillations of the carbon 
nanotubes. 
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