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 Abstract - The Thermosolutal Convection in Rivilin-Ericksen elastico-viscous fluid in porous medium is considered to include the 
effect of suspended particles and rotation under variable gravity.  In the present, to establish the  Principle Of Exchange of 
Stabilities (PES) by using a method of a Positive Operator, a generalization of a positive matrix Wherein, the resolvent of the 
linearized stability operator is analyzed which is in the form of a  composition of certain integral operators. Motivated by the 
analysis of Weinberger and the works of Herron , our objective here is to extend this analysis of positive operator to establish the 
PES. It is established by the method of positive operator of Weinberger that PES is valid for this problem under sufficient 
conditions and g (z) is nonnegative throughout the fluid layer . 

Keywords : Rivilin-Ericksen, Positive Operator, Principle of Exchange of Stabilities,  linearized Stability 
Operator,  Suspended Particles.                                             

1. INTRODUCTION  

Convection in porous medium has been studied with great interest for more than a century and has found 
many applications in underground coal gasification, solar energy conversion, oil reservoir simulation, ground water 
contaminant transport, geothermal energy extraction and in many other areas. With the growing importance of non–
Newtonian fluids in modern technology and industries, the investigations of such fluids are desirable. Rivlin–Ericksen 
[1955] proposed a non–linear theory of a class of isotropic incompressible elastico–viscous fluids with the 
constitutive relations 
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  Here   is the coefficient of viscoelasticity. Such elastico–viscous fluids have relevance and importance in 

agriculture, communication appliances, chemical technology and in biomedical applications.  

Keeping in mind the importance of non–Newtonian fluids in modern technology, industries, chemical 
engineering and owing to the importance of variable gravity field in astrophysics etc.  

        Our objective here is to extend the analysis of Weinberger & Rabinowitz’s  [1969] based on the method of positive 
operator to establish the PES for a  more general convective problems from the domain of non-Newtonian fluid, 
namely,Thermal convection of a Rivlin - Ericksen fluid in porous medium heated from below with variable gravity. Lata 
[2010,2012,2013,2015,2016] has exclusively worked for the validity of principle of exchange of stabilities by using Positive 
Operator Method. 

The present work is partly inspired by the above discussions, and the works of Herron [2000,2001] and the 
striking features of convection in non-Newtonian fluids in porous medium and motivated by the desire to study the 
above discussed problems. Our objective here is to extend the analysis of Weinberger & Rabinowitz’s  [1969] based on 
the method of positive operator to establish the PES to   these more general convective problems from the domain of 
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non-Newtonian fluid. In the present paper, the problem of Thermal convection of a Rivilin- Ericken fluid layer heated 
from below in porous medium under the effect of suspended particles with variable gravity g(z) is positive throughout 
the fluid layer in porous medium heated from below with variable gravity is analyzed and using the positive operator 
method, when g (z)( the gravity field) It is established from the present analysis that PES is valid . 

2. Mathematical Formulation of the Physical  Problem 

Consider an infinite horizontal Rivlin -Ericksen fluid layer of thickness d  bounded by  the  horizontal plane z=0 and 
z=d in porous medium permeated with suspended particles. This layer is heated from below so that a uniform 

temperature gradient 









dz

dT
 is maintained across the layer. This layer is  acted upon by a  vertical variable 

gravity field ))z(g0,0(g 


. 

3.  Basic hydrodynamical equations governing the   physical configuration 

The basic hydrodynamic equations that govern the physical configurations (c.f. Rivlin   and    Ericksen   [1955],  
Spiegel and Veronis [1960], Stokes [1966] and Scanlon and Segal [1973)] ) under Boussinesq approximation[1903] 
are given by; 

3.1. Equation of Continuity 
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3.2. Equations of Motion 
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3.3. The equations of motion and continuity for the particles 

The force exerted by the fluids on the particle is equal and opposite to the force exerted by the particles on  fluid, 
there must be an extra force term, equal in magnitude but opposite in sign, in the equations of motion for the 
particles. The buoyancy force on the particles are neglected.  Inter –particle reactions are ignored for we assume that 
the distances between particles are quite large as compared with their diameter . If  mN is  the mass of   particles per 
unit volume, then the equation of motion and continuity for the particles ,under the above assumptions are : 
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3.4. The equation of heat conduction 

Since the volume fraction of the particles is assumed small, the effective properties of the suspension are taken to be 
those of the clean fluid. Assuming that the particles and fluid are in thermal equilibrium, the equation of heat 
conduction is given as; 
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3.5. The equation of state 

  00 1 TT                                                                                            (6) 

In the above equations, p,  ,  ,  ,  , 1k , ,  )w,v,u(v


,Tand X


denote respectively the pressure, density, 

temperature, viscosity, viscoelasticity, medium porosity,  medium permeability, thermal coefficient of expansion, the 

external force field, gradient operator;   and velocity  of the fluid; S=6  , (  being  particle radius), is the Stokes’  

drag coefficient, x (x,y,z), s , sc , , vc denote the density  and  heat capacity of solid (porous) matrix and fluid 

respectively,  c pt  the heat capacity of the particles and q the “effective” thermal conductivity of the fluid . )t,x(u


 and  

N(x,t) denote the filter  velocity and number density of the suspended particles, respectively. 

Following the usual steps of the linearized stability theory, it is easily seen that the nondimensional  
linearized perturbation equations governing the physical problem described by equations (1)-(4) can be put into the 

following forms, upon ascribing the dependence of the perturbations of the form    tykxkiexp yx  , 

 (c.f.  Chandrasekhar [1961] and Siddheshwar and Krishna [2001]); 
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together with following dynamically free and thermally and electrically perfectly conducting boundary conditions 

wD0w 2       at  10  zandz            (9) 

In the forgoing equations, z  is the real independent variable, 
dz

dD   is the differentiation with respect to z , 
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is the square of the wave number, Pr
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dimensionless Rivilin-Ericksen parameter, 
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02 dg
R is the thermal Rayleigh number,  ir i   is the 

complex growth rate associated with the perturabations and ,w  are the perturbations in the vertical velocity, 

temperature, respectively.  

Hence, the system of equations (7) and (8)   together with boundary conditions (9) constitutes an eigen value problem for 

  for given values of the parameters 
2k , R, F Pr, H ,B and   for the present problem. 

 The system of equations (7)-(8) together with the boundary conditions (9) constitutes an eigenvalue 

problem for  for the given values of the parameters of the fluid and a given state of the system is stable, neutral or 

unstable according to whether r  is negative, zero or positive. 
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It is remarkable to note here that equations (7)-(8) contain a variable coefficient and an implicit function of
 , hence as discussed earlier the usual method of Pellew and Southwell is not useful here to establish PES for this 

general problem. Thus, we shall use the method of positive operator to establish PES. 

3. METHOD OF POSITIVE OPERATOR 

We seek conditions under which solutions of equations (7)-(8) together with the boundary conditions (9) 
grow. The idea of the method of the solution is based on the notion of a ‘positive operator’, a generalization of a 
positive matrix, that is, one with all its entries positive. Such matrices have the property that they possess a single 
greatest positive eigenvalue, identical to the spectral radius. The natural generalization of a matrix operator is an 
integral operator with non-negative kernel. To apply the method, the resolvent of the linearized stability operator is 
analyzed. This resolvent is in the form of certain integral operators. When the Green’s function Kernels for these 
operators are all nonnegative, the resulting operator is termed positive. The abstract theory is based on the Krein –
Rutman theorem [1962 ], which states that;  

 “If a linear, compact operator A, leaving invariant a cone  , has a point of the spectrum different from zero, then it 

has a positive eigen value  , not less in modulus than every other eigen value, and this number corresponds at least 

one eigen vector   of the operator A, and at least one eigen vector 
   of the operator 

A ”. For the present 

problem the cone consists of the set of nonnegative functions. 

To apply the method of positive operator, formulate the above equations (7) and (8) together with boundary 
conditions (9) in terms of certain operators as;  

4.  MATHEMATICAL ANALYSIS BY USING THE METHOD OF POSITIVE OPERATORS 

In the following analysis, we shall first of all construct an equivalent eigen -value problem to the eigen -value problem 
described by equations (7) and (8) together with boundary conditions (9)   in terms of certain operators. 

Let (-D )k 22 w= mw  

and define 

 
M
~

domw,mM
~

M
~

M
~

domw,wmwM
~

M
~

domw,mwwM
~

22







 

We have the following forms of equations (2A.38) and (2A.39) 

  
























)z(gRkMwF1

p

1

1

H 2

1

            (10)                                         

       HRphEaD1 1

22 w                                 (11) 

The above define domains are contained in cone , where 

  








 
1

0

22 dz1,0L is a Hilbert space with a finite magnitude, by definition [], 

with scalar product 

    
1

0

dzzz, ,  ,                   



          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395 -0056 

  Volume: 04 Issue: 01 | Jan -2017                            www.irjet.net                                                         p-ISSN: 2395-0072 

 

© 2017, IRJET       |       Impact Factor value: 5.181       |       ISO 9001:2008 Certified Journal       |    Page 1202 
 

and norm  
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Substituting the value of   from equation (11) in equation (12), we get 
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In particular, taking 0 , we have )0(1 TM 
is also an integral operator. 

 K defined in (12), which is a composition of certain integral operators, is termed as linearized stability operator.  

K( ) depends analytically on    in a certain right half of the complex plane. It is clear from the composition of K( ) 

that it contains an implicit function of   .  
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5. THE PRINCIPLE OF EXCHANGE OF STABILITIES (PES) 
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for al l n and for all real 0
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)FP(4)FHP( 1

2

1   .Thus all the conditions of the  Krein-Rutman theorem are satisfied ,therefore 

  KI  has a positive eigen value 1 , which is an upper bound for the absolute values of all the eigenvalues, and the 

corresponding eigen function    is nonnegative. We observe that 

        01KI 1  , 

 Thus, if   KI  is nonnegative, then 1 1 ,so the methods of Weinberger[] and Rabinowitz []apply and showing that 

“there exits a real eigenvalue a
1
  such that the spectrum of   K  lies in      the set “   1Re  ”. This is 

equivalent to the  PES. 

 

6.Conclusions: 

It is established from the present analysis that PES is valid for Rivilin- Ericken fluid layer heated from below in porous 
medium under the effect of suspended particles with variable gravity g(z) is positive throughout the fluid layer and 

)FP()FHP( 1

2

1  . The following conclusions are deduced from the above result in the light of Remark 1. 
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