
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 01 | Jan -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1101

Secure Data Sharing in Cloud through Limiting Trust in Third

Party/Server

Kalyanee Patil1, S. D. Khatawkar2, Amol Dange3

1 Student, Dept. of Computer Science and Engineering, Shivaji University Kolhapur, Maharashtra, India
2 Professor, Dept. of Computer Science and Engineering, Shivaji University Kolhapur, Maharashtra, India
3 Professor, Dept. of Computer Science and Engineering, Shivaji University Kolhapur, Maharashtra, India

---***---

Abstract - Cloud storage is a service of clouds that causes,
organizations to switch from establishing in-house data
storage systems to the cloud. The advances that proposed
recently have given rise to the popularity and success of cloud
computing. However, when outsourcing the data and business
application to a third party causes the security and privacy
issues to become a critical concern. Within an organization,
data need to be shared among different users with different
credentials. Secure sharing of data among a such group which
causes an insider threat from valid or malicious user is an
important research issue. Current approach provides a
solution on aforementioned issue. Under this approach, the
third party is an in charge of security related operations like
encryption, decryption, key generation, access control, etc. But
there may be a possibility that this third party may show
malicious behavior and causes insider threat. A better
approach should provide a solution which limits trust in third
party while assuring data confidentiality. We propose an
approach, based on two layers of encryption that addresses
such requirement. Under our approach, the data owner
performs a lower layer encryption, whereas the third party
performs an upper layer encryption on top of the owner
encrypted data. A challenging issue is how to maintain
confidentiality of data. To implement it we shifted access
control right distribution operation to the owner. The owner
sends a key to valid users for encryption and decryption. This
ensures only valid user will get an access to the data.

Key Words: Cloud Computing, Confidentiality, Access
control, Secure Sharing, Privacy, Security, etc.

1.INTRODUCTION

CLOUD computing is rapidly emerging due to the
provisioning of elastic, flexible, and on-demand storage
and computing services for customers. Cloud
computing offers an effective way to reduce capital
expenditure and operational expenditure. This
economic benefit is a main cause of the cloud
popularity. However, SECURITY and privacy represent
major concerns in the adoption of cloud technologies
for data storage. An approach to mitigate these
concerns is the use of cryptography where data are
usually encrypted before storing to the cloud [1].
Whereas cryptography assures the confidentiality of

the data against the cloud, when the data are to be
shared among a group, the cryptographic services need
to be flexible enough to handle different users, exercise
the access control, and manage the keys in an effective
manner to safeguard data confidentiality. The data
handling among a group has certain additional
characteristics as opposed to two-party
communication or the data handling belonging to a
single user. The existing, departing, and newly joining
group members can prove to be an insider threat
violating data confidentiality and privacy.

While adopting a cloud for storage, the loss of control
over data and computation raises many security
concerns for organizations. The loss of control over
data and the storage platform also motivates cloud
customers to maintain the access control over data
(individual data and the data shared among a group of
users through the public cloud).The cloud customer
encrypts the data before storing to the cloud , this
ensures cloud doesn’t learn any information about
customer’s data. The access rights are given to different
users by distributing key used for encryption.
However, this will result in excessive load over
customers. By putting a third party in between
customer and cloud and delegating all operational
loads to a third party will help to lower load from the
customer. But while doing so there is a possibility that
third party may show malicious behavior. Hence there
should be an approach to overcome this.

In this paper, we propose a methodology named Secure
Data Sharing in Clouds through limiting trust in Third
party/Server that deals with the aforementioned
security. It helps to limit trust in third party/server.
While delegating some operational load to a third
party this approach ensures data confidentiality. For
this the concept of two layer encryption is used where
lower layer encryption is performed by the data owner
and upper layer encryption is performed by third
party. The owner provides the authority of file access
to user by proving key used for lower layer encryption,

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 01 | Jan -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1102

while encryption or decryption of the file. Hence, by
retaining control over operations back to data owner
this approach helps to preserve confidentiality [2].The
departing member cannot decrypt the data on its own
as he/she will not able to get a key used for lower layer
encryption from data owner. Similarly, no frequent
decryption and encryption are needed for new user
inclusion and user's departure.

2. SIGNIFICANCE

Approach addressed in [3] relies completely on third party
(CS) for security related operations like encryption, key
generation, access control, decryption, etc., but there is a
possibility that this third party shows the malicious behavior
and cause an insider threat. This approach has presented a
way to limit trust level in third party(CS).The lower layer
encryption at owner ensures that third party will not get
direct access to data. File access authority is given by the
owner by distributing key used for lower layer encryption.
Even if a third party provides file to any unauthorized users,
they unable to access it as they will not able to get a key for
decryption from file owner.

In addition, this approach causes less time consumption. In
[3] for each user separate key shares are needed to be
calculated during encryption and during decryption original
key needs to be computed from shares. Also for new user
inclusion separate key shares need to be calculated. In our
approach only two keys require one for lower layer
encryption and another for upper layer encryption. Hence
time for key share generation during encryption, original key
computation during decryption and generation of key shares
for newly joining members get eliminated.

2. RELATED WORK

Approach addressed in [3] provided a way for secure sharing
of data among users with different level of privilege. There is
a third party in between customer and cloud who is
responsible for performing security related operations like
key management, encryption, decryption, and access control.
Data is encrypted using a single symmetric key. Two
different key shares are generated for each user. One share is
given to the user and the other is kept by a third party
named Cryptographic server. User with one share ensures
security from the insider threat. However, this approach
relies completely on third party, there is possibility that
third party shows malicious behavior and cause an insider
threat. As suggested in [2], to overcome the insider threat to
cloud confidentiality one defense strategy is to retain control
back to the owner. But it will cause excessive load over
owner. As Suggested in [4], the cloud generates the public–
private key pairs for all of the users and transmits the public
keys to all of the participating users. Partial decryption is
performed at the cloud. Due to the fact that key management

and partial decryption are handled by the cloud, user
revocation is easier to handle. However, the proposed
scheme treats the public cloud both as a trusted and
untrusted entity at the same time. From a security
perspective, it is not recommended to shift the key
generation process to the shared multitenant public cloud
environment.

This paper presented an approach which helps to counter
the aforementioned issue. We have used two layer
encryption schemes as suggested in [5]. The lower layer
encryption by data owner ensures that third party will not
able to access owner’s data. Authority to access data is given
by data owner by transferring key used for lower layer
encryption to the user. This ensures that third party will not
able to give an access to any unauthorized user. Even if he
does so that unauthorized user will not able to read it in the
absence of key used for lower layer encryption. In this way,
by retaining control over some operations this approach
ensures cloud confidentiality.

3. POPOSED WORK

:- File
(1) User registration; (2) File Upload; (3) Download Request;
(4) File Download

Fig -1: System architecture of Secure Data Sharing in the
Cloud through limiting trust in Third party/server

Figure1 shows the basic architecture of “secure data sharing
in the cloud through limiting trust in third party/ Server”.
This proposed system will work with four entities as follows:
1) owner; 2) user; 3) server and 4) cloud. The data owner
first assigns a unique ID to each user of his files. The users
then register with owner by providing his own password.
The owner maintains information about each user in list-
User List containing unique id and password. The
information about users also sends to a third party for
storage. While uploading file to cloud the file owner will
perform lower layer encryption and submit the encrypted
file. Server after receiving a file performs upper layer
encryption on it. The encrypted data then subsequently get
uploaded to the cloud for storage. The file owner assigns
access right (read/write) on file to users. The list of users,
their access right and other information like date from which
access right is valid will get sent to the third party server
.This information gets maintain there in the form of ACL. ACL
is maintained for each file containing file id, user id, date,
access right. The user who wishes to access the file sends a

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 01 | Jan -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1103

download request to the third party server. The third party
server receives the unique ID and password from the user,
after authenticating the requesting user it downloads the
data file from the cloud. The data file gets decrypted and sent
back to the user. User after receiving file requests a key to
the owner. The owner provides the key he has used to
perform lower layer encryption. User decrypts a file with key
he has received from the owner. For a newly joining
member, the owner assigns a new unique id and user then
register with owner. The owner will send the information
regarding this user to the server to maintain it in an ACL. For
a departing member, the record will deleted from all
respective tables.

4. IMPLEMENTATION STRATEGIES

4.1 User Registration:

This operation is performed by the file owner. The owner of
a file will first assign a unique ID (ID) to each user of his files.
Then user registers with this unique id with owner by
providing his own password (PassW). Figure 2 shows user
registration operation.

Fig -2: User Registration

4. 2 File Upload

4.2.1 Lower Layer Encryption

Algorithm:
R = {0, 1}^8 // R is any random number
Kf= Hf(R) // after applying hash function the R will
completely randomized
F’ = SKA(F, Kf)

For each file F separate key Kf is generated. Kf is generated
in two steps. In the first step, the random number R of length
8 bits is derived by the file owner. In the next step, R is
passed through a hash function that could be any hash
function with a 128-bit output. The length of Kf is 128 bits.
However the length of the key can be altered according to
requirement. The file then encrypted with a symmetric
encryption algorithm using generated key Kf. After

successful encryption, encrypted file
F’ gets sent to the server.

4.2.2 Upper Layer Encryption:
Algorithm:
R = {0, 1} ^8 // R is any random number
K’f= Hf (R) // after applying hash function the R will
completely randomize
C = SKA(F’, K’f)

The third party server is responsible for upper layer
encryption. For this it generates a key(K’f) of length 256 bits.
The key K’f is generated in two steps. In the first step, the
random number R of length 8 bits is derived by the third
party server. In the next step, R is passed through a hash
function that could be any hash function with a 256-bit
output. The length of K’f is 256 bits. However the length of
the key can be altered according to requirement. The file
then encrypted with a symmetric encryption algorithm using
generated key K’f. After successful encryption , encrypted file
C gets sent to cloud for storage. Figure 3 shows a file upload
operation which involves both lower layer encryption at
owner and upper layer encryption on the server.

Fig -3: File Upload

4.3 File Download

This operation requires a decryption to be performed twice.
First at the server and other by requesting user. Figure 4
shows download operation.

4.3.1 Decryption at the Third Party Server

Algorithm:
Get IDi and PassWi from the requesting user i.
Perform authentication and verify access right.
if authentication failed or access is not valid, then
Return the access denied message to the user.
else
Download C from the cloud.
F’ = SKA(C, K’f)
send F’ to the user.
end if

Whenever any user wants to download any file, he/she
sends a request to the third party server. The third party

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 01 | Jan -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1104

server after getting a request authenticate user and after
successful authentication download requested file from the
cloud, decrypts it and sends it to the user.

4.3.2 Decryption at the Requesting User

User after getting file from a third party server decrypts it.
For this, the user requests a key to the file owner. File owner
after performing successful authentication sends a key. The
user then decrypts a file with a key he/she got from the
owner.

Algorithm:
F=SKA(F’,Kf)

Fig -4: File Download

4.4 File Update

This operation requires lower layer encryption to be
performed by the user who updates the file. For this, user
requests for a key to file owner. File owner after performing
authentication sends a key. The user then performs
encryption on data and sends update request to the server.
For encryption, user uses symmetric encryption algorithm
used in algorithm 1. The server performs authentication and
check whether the requesting user has update permission.
After a successful authentication server performs upper
layer encryption and upload file to the cloud. For encryption,
server uses symmetric key encryption algorithm used in
algorithm 2. Figure 5 shows update operation.

Fig -5: File Update

4.5 New User Inclusion and Departure

The inclusion of new user is made by registering user with
owner by providing new id. This information stored by the
owner in the user list. This information also gets sent to the
third party server for storage. For newly joined member
owner assigns access rights on files. This information also
gets sent to the third party server to include it into ACL. The
information contains file id, user id, date from which access
right is valid, access right. The provision of date ensures
backward access control. For departing member, the server
is notified by the owner. The third party sever then deletes
all records related to the user from ACL. The departing
member will not able to decrypt data by its own. Hence this
ensures forward access control.

5. PERFORMANCE EVALUATION

5.1 Experimental Setup

To evaluate the performance of the proposed methodology,
we implemented the methodology in Eclipse using the JAVA
framework. As discussed earlier, the proposed methodology
consists of four entities, the cloud, the third party server,
owner and the users. The jelastic cloud service which serves
as the cloud server in our implementation. The third party
and file owner are implemented as a server using apache
tomcat. This implementation follows the MVC model. Where
the view is implemented using jsp/html, control is nothing
but servlets. The functionalities required by the user that is
user level encryption and decryption are implemented as a
TCPclient application that connects with the owner to
receive the key. This communication is secured by SSL
protocol. The functionality that required by the owner to
provide key is implemented as a TCPserver application
which always kept in running mode. The communication
between the entities Owner and the third party is
accomplished using URL class (java.net.URL). The class
HTTPsURLConnection is used to open a secure connection to
another entity. The scheme uses the SHA-1 hash function for
generating keys at the owner and SHA-256 hash function for
generating keys at third party server. The AES for encryption
and decryption is used. All of the cryptographic operations
like encryption and decryption are implemented using a
javax.crypto.Cipher. The class java.security.MessageDigest is
used to access all of the methods related to SHA. The
hardware characteristics for the Third Party, Owner and the
user client are shown in Table 1.

Table -1: Hardware Specification

CPU Intel(R) CoreTM i3-
3217U CPU 2 @ 1.80GHz

RAM 4 GB

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 01 | Jan -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1105

Storage 100GB

OS Windows 7 64 bits

5.2 Results

We evaluated the methodology on the basis of the total time
consumed to upload/ download a file to/from the cloud. The
total time is composed of the time from the time of
submission of request to the CS to the point of time at which
the file is uploaded/downloaded to/from the cloud. The
following times are included in the total time:

1) the key computation time at owner and third party server;
2) the encryption/decryption time at owner/user and third
party server;
3) the upload/download time;
4) the time of request and other related data submission to
the CS and the cloud.

Fig. 6 shows the results for the upload time. All of the
constituent times are represented by separate line graphs.
The term “others” refers to the fourth constituent time
discussed previously. In general, the time to upload the data
increased with the increase in the file size. However, some
marginal changes in time are due to network condition at
that time. Hence, the file upload time was dependent on the
network conditions. The key computation time is
independent of file size and almost remained constant. The
encryption time increased with the increase in the file size.
Fig. 7 shows the results for the download operation involved
in downloading the file from the cloud and the subsequent
decryption processes. The trend of results is similar as in the
case of a file upload. However, the times in decryption and
the download are changed. There is no need to compute key
during download procedure. Hence Key computation time is
eliminated. We have compared our methodology with the
scheme presented in [3]. The comparison is on the
turnaround time for encryption and decryption. Table 2
shows the turnaround times for upload and Table 3 for
download. These tables reveal that the SeDaSC methodology
outperforms the other technique.

Table -2: Comparison of Turnaround time for File Upload

File
Size

(MB)

Encryption
Time(Sec)

Key
Computation

Time(Sec)

Total
Upload
[3](Sec)

Total Upload
(This

System)(Sec)

0.5 0.101 0.001 0.94 0.384

1 0.240 0.001 1.24 0.376

10 2.268 0.001 6.43 3.390

50 6.589 0.001 9.01 8.220

100 11.371 0.001 17.37 13.791

Fig -6: Performance of File Uploads

Table -3: Comparison of Turnaround time for File Download

File Size
(MB)

Decryption
Time(Sec)

Total
Download
[3] (Sec)

Total
Download(This

System)(Sec)

0.5 0.711 0.96 0.871

1 0.231 1.18 0.421

10 1.471 6.48 4.663

50 7.405 10.24 8.016

100 16.939 20.68 17.791

Fig -6: Performance of File Downloads

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 01 | Jan -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1106

6. Limiting Trust in Third Party or Server

Approach addressed in this paper works on a future work of
previous approach that is limit trust in third party (CS). The
previous approach relies on third party for performing
security related operations like encryption, decryption, key
generation, access control, confidentiality management, etc.
However, the third party is trusted one there may be
possibility that it can lead to an insider threat. Hence there
should be an approach which ensures data security by
keeping control over some operations at data owner.

In the previous approach as owner transfer his data as it is to
the third party/server. In this case the server can read that
data and also can transfer this data to anyone. Unlike
previous approach, in the proposed approach, encrypted file
is handed over to the third party instead of the original file.
This ensures third party will not get direct access to the
owner’s data. In the previous approach third party assigns
permissions to each user by providing one key share. As
third party has control over this operation, he/she can able
to show any malicious user as an authorized by providing
one key share. In the proposed approach owner assigns
permissions to each user by providing key used for lower
layer encryption. This ensures that only authorized users
will get an access to the file. For example, suppose if third
party provide files to any malicious user, that user will not
able to decrypt them in the absence of key used for lower
layer encryption.

7. CONCLUSIONS

 We proposed a methodology for secure sharing of data
among multiple users with different credentials. The
proposed methodology provides data confidentiality, secure
data sharing without reencryption, access control for
malicious insiders, and forward and backward access
control. Moreover, proposed methodology addressed
problems in previous approach and provided its effective
solution.

The approach provided here can be extended by
strengthening accountability. Here users are differentiated
by user id’s and password. One can provide an approach
which uses different way of ensuring accountability of users.
One can provide an alternative approach for limiting trust in
third party/server.

REFERENCES

[1] Cloud Security Alliance, “Security guidelines for critical

areas of focus in cloud computing v3. 0,”
 2011.

[2] Zhifeng Xiao and Yang Xiao, Senior Member,IEEE,
“Security and Privacy in Cloud Computing”, IEEE
COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15,
NO. 2, SECOND QUARTER 2013.

[3] Mazhar Ali, Student Member, IEEE, Revathi
Dhamotharan Eraj Khan, Samee U. Khan, Senior
Member, IEEE, Athanasios V. Vasilakos, Senior Member,
IEEE, Keqin Li, Fellow, IEEE, and Albert Y. Zomaya,
Fellow, IEEE,”SeDaSC: Secure Data Sharing in
Clouds”IEEE SYSTEMS JOURNAL 2015.

[4] S. Seo, M. Nabeel, X. Ding, and E. Bertino, “An Efficient
Certificateless Encryption for Secure Data Sharing in

 Public Clouds,” IEEE Trans. Knowl. Data Eng., Vol. 26,
 no. 9, pp. 2107–2119, Sep. 2013.

[5] Mohamed Nabeel and Elisa Bertino, Fellow, IEEE,Privacy
 Preserving Delegated Access Control in Public Clouds”,

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA
ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 2014.

