
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056
 Volume: 03 Issue: 09 | Sept-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 517

An Empirical based Object Oriented Coverage Analysis
Using XML

Sasanko Sekhar Gantayat, Srinivas Prasad, K. Koteswar Rao
Department of Computer Science & Engineering,

GMR Institute of Technology, Rajam, Andhra Pradesh, India.
sgantayat67@gmail.com, 1srinivas.prasad@gmrit.org, koteswarrao.k@gmrit.org

Abstract: Testing of Object-oriented software has a
number of features that make it different from
conventional software testing. With the increase in size
and complexity of modern software products, the
importance of testing is rapidly growing. In this paper, a
new methodology is proposed to evaluate the code
coverage, its effectiveness and compared its advantages
over other traditional techniques.

Keywords: Test Coverage, Object Oriented Coverage,
Coverage Measure, Test Coverage Tools, XML.

1. Introduction to Test Coverage

Test Coverage is the process of identifying the extent to
which different test suites are appropriate in accessing a
full complement of the source code in testing various
components of the system. To the management and
deployment team, it provides assurance on the
comprehensive nature of the tests and provides insight
into the areas where testing is inadequate, or where the
labor expended on releasing a product can be reduced
due to ineffective testing. It would be worthwhile to
investigate the possibility of testing based on coverage
analysis approach and study its effectiveness.

It is the process which provides a measure of how well
the test suite actually tests the software. The major
aspect of coverage analysis are[6]:

 Finding areas of a program not exercised by a
set of test suites

 Creating additional test cases to increase the
coverage

 Determining a quantitative measure of coverage
which is an indirect measure of quality

 Identifying redundant test cases that do not
increase coverage

 2. Basic Coverage Measures
There are many coverage measures. Brief description
about some of the basic coverage measures are given
below [1,3,4,5,6,7,16,18]:

Statement Coverage: This measure reports the
uncovered statements as well as a percentage of
statements that are covered. It might not detect the
control faults. It tells whether the nodes in a control flow

graph (CFG) are executed or not. It can not check
whether all the branches are executed or not.

CFG: It is a graphical representation of a program, in
which each node consists of a set of statements that can
be executed sequentially and edges are labeled with
conditional statements.

Branch Coverage: It explores whether all branches are
executed or not. It checks for the edges of the CFG i.e., it
checks for all the branches that are formed with if
statement, for statement, while, do while, switch
statement and exception handlers. It is also known as
Decision coverage. It reports whether Boolean
expressions tested in control structures evaluated to
both true and false.

Decision coverage: It reports whether Boolean
expressions tested in control structures (like if
statement, while statement) are evaluated to both true
and false. The entire Boolean expression is treated as
one true or false predicate although it contains logical -
and or logical-or operators. In addition, it includes
switch-statement cases, exception handlers and
interrupts handlers.

Condition Coverage: It reports the true or false
outcome of each Boolean subexpression, separated by
logical – operators if any. It measures the subexpressions
independently of each other. This measure is similar to
Decision coverage but has better sensitivity to the
control flow.

Path Coverage: It reports whether each of the possible
paths is executed or not. A path is a unique sequence of
branches from the function entry to the exit. It is also
known as Predicate coverage. But due to the loop
structures, many variations of this measure exist. It has
two major disadvantages – the first one is the number of
paths increases exponentially to the number of branches,
the second one is that many paths are not possible to
exercise due to relationships of data.

Method Coverage: It gives information that each
method is invoked or not. In Java there are some
methods declared as abstract i.e., they do not have a
body. Therefore, this has to be taken care by the test
coverage analyzer.

mailto:sgantayat67@gmail.com
mailto:srinivas.prasad@gmrit.org
mailto:koteswarrao.k@gmrit.org

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056
 Volume: 03 Issue: 09 | Sept-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 518

Class Coverage: It gives information that at least a
single method of a class is invoked or not. Again in Java,
there are some classes, called Interface, which do not
have any method definition. So the test coverage
analyzer should take care of such classes.
Loop Coverage: It reports whether each loop body in
the program was executed zero times, exactly once or
more than once (consecutively). For do-while loop, it
reports whether the body is executed exactly once or
more than once. The advantage of this measure over
another measure is that it reports whether while-loop
and for-loop in the program are executed more than
once.

3. Techniques of Test Coverage

The test coverage tools work by instrumenting the
program i.e., by inserting the “probes” into the program.
The different tools vary in the way this instrumentation
phase is done. Of course, adding probes to the program
will make it bigger and execution slower.

The different types of instrumentation are discussed
here [7,10].

Source Level Instrumentation: Some tools add probes
at the source level. They analyze the source code and add
additional code that will record the program execution
status. Such tools actually do not create new source file.
They intercept the compiler after parsing but before
code generation to insert the changes.
This type of instrumentation is dependent on
programming language i.e., the provider specifies which
languages it supports. But it is independent of operating
environment (processor, OS).

Executable Instrumentation: In this case the probes
are added to the executable file. The tools will create a
new executable after analyzing the present executable
file.

This type of instrumentation is independent of
programming language. But it is dependent on operating
environment i.e., the provider specifies which processor
to support.

Runtime Instrumentation: In this case the probes are
not added until the program is run. The probes exist only
in the in-memory copy of the executable file but not
inserted into the file. Therefore to combine, the coverage
tool initiates the program execution directly or
indirectly.
Some coverage tools, alternatively, add a small bit of
instrumentation to the executable, which does not affect
the size or performance of the executable.

This type of instrumentation is also independent of
programming language and dependent on operating
environment.

4. Architecture of Coverage Tool
In this section the architecture of the general coverage
tools is discussed. These are organization of the tool and
the instrumentation technique.

4.1. Organization of Tool

Coverage tools helps in checking that how thoroughly
the testing has been done [13,14].

A coverage tool first identifies the elements or coverage
items that can be counted. At component testing level,
the coverage items could be lines of code or code
statements or decision outcomes (e.g. the True or False
exit from an IF statement). At component integration
level, the coverage item may be a call to a function or
module.

Instrumenting the Code is the process of identifying the
coverage items at component test level. Then
automatically or manually a set of tests is run through
the instrumented code. The number of coverage items
are counted using the coverage tool and executed by the
test suite. A report is generated on the percentage of
coverage items that have been tested, and also identify
the items that have not tested.

The common features of coverage measurement tools
are:
• To identify coverage items (instrumenting the code)
• To calculate the percentage of coverage items those
were tested by a set of tests
• To report coverage items those have not been tested
yet
• To generate stubs and drivers

Fig-1. Basic Organization of Tool
There are numerous coverage tools available
commercially. But here we will discuss a typical
architecture which is common to much different
instrumentations and program analysis tools. Although it

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056
 Volume: 03 Issue: 09 | Sept-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 519

is language independent, the approach is made with
reference to Java language.

The internal organization of a coverage tool is depicted
above. Here the Java source file (source.java) is parsed
first and an Abstract Syntax Tree (AST) is generated.
Then the AST is parsed during which code coverage
instrumentation is inserted into the source file.
According to the options chosen, several output files are
generated. The source.cov is an instrumented version of
the original source file. And the source.cdb contains a
database of all the changes and instrumentation points
made to the source file. Hence, the original source file
can be constructed from cov and cdb files. In the other
way, the original source file may be saved in another
directory and the source.cov is renamed to source.java.
Now this instrumented file may be compiled by a Java
compiler and executed either in a unit test or as part of
the original application. The required type of coverage
can be mentioned in the options.

The primary function of the parser is to generate the AST
for the entire source file. In addition to the language
components, the AST contains the line and column
references to the original source file for each node. This
simplifies the identification of grammatical structures
and variables that are to be instrumented and their
locations. Hence, AST makes the instrumentation easier.

4.2. Instrumentation Technique

Generally, instrumentation is the technique of inserting
probes into the source code which detect the coverage
information about the tests run on the source code. So
after insertion, the source code needs to be recompiled.
But two factors are taken care about instrumentation –
first, it should have the least impact on the execution
time of the source code and second it should not affect
the functionality of the unit. The most common
instrumentation technique can be explained with a tool
Advanced Java Coverage Tool (AJCT) as follows.

For each path determining relational expression in the
source file, the relational expression is replaced by the
following method:

jc.pc(relational expression, identifier)

where relational expression is the original expression of
the source, the identifier is a unique integer value
assigned by AJCT and pc is a method defined in a class jc.
For example, the expression (p<q) would be replaced by
jc.pc(p<q,16) if it is the 8th instrumentation point within
the AST.

The purpose of this method is to increment the elements
of the array maintained by AJCT. If the relational
expression evaluates true, then the array element with
index equal to identifier is incremented otherwise the

array element with index equal to identifier+1 is
incremented. So during post-execution analysis, the
number of times the relational expression is evaluated
can be determined from the array.

This approach allows Java virtual machine to evaluate
the original relational expression and pass it as an
argument to jc.pc and it returns the original Boolean
result. This approach is used for conditional expressions
like if, while, for etc. But, for non-branch related
statements like switch statement or try-catch block, AJCT
replaces the relational expression parameter with the
Boolean value true and instruments the first location
where an executable statement can be placed.

To obtain method coverage same technique can be
applied. If the method contains conditional path
determining expression, then the default relational
expression instrumentation can indicate whether the
method is reached or not. If the method contains non-
loop conditional expression, then it can indicate the
number of times the method was called. Otherwise, the
AJCT uses jc.pc (true, identifier) as the first statement in
the method and counts the number of times it was
invoked.

For all cases, AJCT logs the value of the relational
expression and also maintains a cumulative count of
each true or false result. From such log files and the
array maintained by AJCT, various coverage reports can
be generated.

5. Survey of Coverage Tools

Here we have discussed few readily available coverage
tools [3,8,13,17].

LDRA Testbed: It is a static analysis and code coverage
tool suite for C and C++. It is a unique quality control
tool that provides powerful source code analysis and
testing facilities for the validation and verification of
software applications. It is a fully integrated tool suite
for static analysis and code coverage.

Static Analysis analyses the code and provides an
understanding of the code structure and also it measures
code coverage of statements, branches, test paths and
conditions. It uses automatic instrumentation technique
to measure the code coverage levels during test process
and with the help of which it is able to detect the
untested part of the code. Also, when an error occurs
during testing, it presents the corresponding code area
being executed in reports. This makes very helpful for
the developer to focus on that specific area of code and
save time.

Bullseye Coverage: It is a full-featured code coverage
analyzer for C/C++ running on Microsoft and Unix
operating systems. It quickly finds untested code and
measures testing completeness. It also increases testing

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056
 Volume: 03 Issue: 09 | Sept-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 520

productivity by showing the regions of your source code
that are not adequately tested. Bullseye Coverage
enables us to create more reliable code and save time. It
reports Function coverage which enables us to quickly
know what major areas of the software are untested i.e.,
to get a quick overview. And also it reports condition/
decision coverage to know whether every control
structure with every possible decision outcome as well
as every possible condition outcome are checked i.e., to
give high precision code. It uses source code
instrumentation which is required for the best coverage
analysis. Therefore, the code size increases by 1.4 times
and the execution time increases by 1.2 times. It works
with everything in C++ and C, including system-level and
kernel mode.

Clover: It is a low cost code coverage tool for Java.
Clover provides a method, branch and statement
coverage for projects, packages, files and classes. Unlike
tools that use bytecode instrumentation, it uses source
code instrumentation and it produces the most accurate
coverage measurement for the least runtime
performance overhead.

As the code under test executes, code coverage systems
collect information about which statements have been
executed. This information is then used as the basis of
reports. In addition to these basic mechanisms, coverage
approaches vary on what forms of coverage information
they collect. There are many forms of coverage beyond
basic statement coverage including conditional coverage,
method entry and path coverage.

Clover uses these measurements to produce a Total
Coverage Percentage for each class, file, and package and
for the project as a whole. The Total Coverage
Percentage allows entities to be ranked in reports. The
Total Coverage Percentage (TPC) is calculated as follows:

TPC = (BT + BF + SC + MC) / (2*B + S + M)
 where
 BT - branches that evaluated to "true" at least once
 BF - branches that evaluated to "false" at least once
 SC - statements covered
 MC - methods entered

B - total number of branches
 S - total number of statements

M - total number of methods

Clover is designed to measure code coverage in a way
that fits with the current development environment and
practices. Clover's IDE Plugins provide developers with a
way to quickly measure code coverage without having to
leave the IDE.

Dynamic Code Coverage: Without using any
compile/link time instrumentation, it gathers coverage

information by using runtime instrumentation. Each
function/method, line, decision and branch is evaluated
for execution and a detailed coverage file is generated in
the process. Coverage files from multiple runs can be
assembled to get a detailed Coverage Analysis of a
particular process.

It can be used to gather information at any point in the
software lifecycle. In development, it can be used for unit
testing. In testing, it can be used to determine test suite
effectiveness. In pre-production, Dynamic Code Coverage
can determine which modules are of most interest to a
particular customer. In production, it can be used to
determine which features and modules are actually
being used. And hence the various outputs can be
summarized in a variety of ways in order to get different
views on the depth of coverage. Platform – Solaris, Linux

SD’s Java Test Coverage: Semantic Design supplies test
(or code) coverage tools for arbitrary procedural
languages. Such tools provide statistics and detail
information about which parts of an application program
have been executed (usually by a test suite). This
information is useful to determine the readiness of
software for actual use. The type of coverage information
collected is branch coverage, which subsumes statement
coverage.
SD's test coverage tools operate by inserting language-
specific probes for each basic block in the source files of
interest before compilation /execution. At execution
time, the probes record which blocks get executed
("coverage data"). On completion of execution, the
coverage data is typically written to a test coverage
vector file. Finally, the test coverage data is displayed on
top of source text for the system under test, enabling a
test engineer to see what code has (not) been executed,
and to see overall statistics on coverage data.
Platform - Probe installer operates on Win/NT, Win2K,
WinXP Java applications under test and the coverage
display tool can run on any Java2 platform.

A sample SD’s test coverage report is presented below.

Semantic Design’s TEST COVERAGE REPORT

Probe Reference File:

 C:\users\idbaxter\Parlanse\P0Compiler\p0c.prf

Test Coverage Vectors:

 C:\users\idbaxter\Parlanse\P0Compiler\RegressionTest\

%TestCoverage_2002_11_19_09_21_44_000.tcv

SUMMARY:

 Total Probes: 9481

 Total Files: 7

 4780 probes covered. 4701 probes uncovered.

 50.4% probes covered. 49.6% probes uncovered.

COVERAGE REPORT BY FILE:

 [1] C:\users\idbaxter\Parlanse\P0Compiler\P0Compiler.c 49.9%

uncovered 4587/9205

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056
 Volume: 03 Issue: 09 | Sept-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 521

EMMA: EMMA is an open-source toolkit for measuring
and reporting Java code coverage. It is different from
other tools for its unique feature support for large-scale
enterprise software development while keeping
individual developer's work fast and iterative.
It is a pure Java coverage tool based on bytecode
instrumentation. It provides two options for
instrumentation – offline or online. In the offline mode
instrumentation is done explicitly and in the online
mode it is done in the JVM. It supports line, method, class
coverage but it doesn’t support branch and path
coverage. And the coverage outputs are consolidated at
method, class, package and ‘all classes’ levels. It does not
require accessing the source file, rather it instruments
the individual .class files or entire .jar file. Since the
runtime overhead of added instrumentation is small (5-
20%), it is quite fast. Platform – any Java platform

CTC++: It is a powerful instrumentation-based test
coverage and dynamic analysis tool for C and C++ code.
It provides all coverage measures like, function coverage,
decision coverage, statement coverage, condition
coverage. It operates in following three steps:

 Use the CTC++ Preprocessor (ctc) utility for
instrumenting and compiling the C or C++ source files
of interest and for linking the instrumented program
with the CTC++ run-time library. At this phase ctc
maintains a symbol file, MON.sym by default, where it
remembers the names of the instrumented files and
what they contained.

 Execute the test runs with the instrumented program.
When the instrumented code portions are executed,
CTC++ collects the coverage and function timing

history in memory. Normally at the end of the
program, automatically by CTC++, the collected
counters are written to a data file, MON.dat by default.
If there were previous counters in the data file, they
are summed up.

 Use the CTC++ Postprocessor (ctcpost) utility for
putting one or more symbol files and data files
together and produce the human readable textual
reports. One of them, the Execution Profile Listing, can
be further processed with ctc2html utility for getting
and an easy-to-view hierarchical and color-coded
HTML representation of the coverage information.
With the ctc2excel utility the coverage data can be
converted to a TSV (tab separated values) file, suitable
input to Excel (or any spreadsheet application).
Platform-Windows 2000/NT, HPUX, Solaris, Linux.

GlassJAR Toolkit: The type of coverage information
collected by this tool is branch coverage, line coverage
and method coverage. It presents coverage for individual
test cases in addition to the grand totals. Since, it
operates on bytecode, a tester need not to install a full
development environment and source code. It supports
any JVM compliant with the Java 2 standard. It supports
J2EE, J2SE and J2ME i.e.; It can test for servlets, EJB, any
stand alone application or J2ME midlets. The best part is
the output report format is customizable. Platform -
Windows NT/2000/XP, Solaris, HP-UX, Linux, others
(any Java 2 platform)

6. Comparison of Tools

Coverage
Tool

Company Type of
Coverage

Instrum
entation

Type

Languag
e

Bullseye
Bullseye
Testing
Tech.

Function,
Condition

Source
Code

C, C++

Clover Cenqua
Statemen,
Method,
Branch

Source
Code

Java

Dynamic
Code
Coverage

Dynamic
Memory
Solutions.

Function,
Decision,
Branch

Run Time Java

Java Test
Coverage

Semantic
Design

Branch
Source
Code

Java

CTC++ Testwell

Function,
Decision,
Branch,
Condition

Source
Code

C, C++

EMMA
Source
Forge

Statemen,
Method,
Class

Byte
Code

Java

GlassJAR
Toolkit

Tester’s
Edge

Statemen,
Method,
Branch

Source
Code

Java

LDRA
Testbed

LDRA

Statemen,
Condition,
Branch,
Path

Source
Code

C, C++

Table 1. Comparison of different Test Tools

 [2] C:\users\idbaxter\Parlanse\P0Compiler\P0CriticalRanges.c
47.5%
 uncovered 38/80
 [3] C:\users\idbaxter\Parlanse\P0Compiler\P0Cwin32.c 100.0%

uncovered 30/30
 [4] C:\users\idbaxter\Parlanse\P0Compiler\P0ExceptionRanges.c
17.7%

 uncovered 9/51
 [5] C:\users\idbaxter\Parlanse\P0Compiler\P0File.C 100.0%

 uncovered 0/0
 [6] C:\users\idbaxter\Parlanse\P0Compiler\P0SourceXRef.c 34.3%
 uncovered 37/108
 [7] C:\users\idbaxter\Parlanse\P0Compiler\crc32.c 0.0%

 uncovered 0/7
FILES COMPLETELY COVERED:
 [1] C:\users\idbaxter\Parlanse\P0Compiler\P0File.C 0 probes
 [2] C:\users\idbaxter\Parlanse\P0Compiler\crc32.c 7 probes

COVERAGE BY SUBSYSTEM/DIRECTORY:
 (1) C:\users\idbaxter\Parlanse\P0Compiler 49.6% uncovered
4701/9481
 [1] C:\users\idbaxter\Parlanse\P0Compiler\P0Compiler.c
 [2] C:\users\idbaxter\Parlanse\P0Compiler\P0CriticalRanges.c
 [3] C:\users\idbaxter\Parlanse\P0Compiler\P0Cwin32.c
 [4] C:\users\idbaxter\Parlanse\P0Compiler\P0ExceptionRanges.c
 [5] C:\users\idbaxter\Parlanse\P0Compiler\P0File.C
 [6] C:\users\idbaxter\Parlanse\P0Compiler\P0SourceXRef.c
 [7] C:\users\idbaxter\Parlanse\P0Compiler\crc32.c

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056
 Volume: 03 Issue: 09 | Sept-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 522

 7. New Approach for Coverage Analysis

We have implemented a new approach to realize a
prototype tool. We have named our tool Model-based
Mutation Tester (MMT).

From the model, we generate coverage matrix based on
our proposed operators, and then automatically seed
specific type of faults. When run the test suite to
generate a test summary report of errors not detected by
a test suite.

This approach has the following components:
1. Test Suite (to test and validate the test)
2. Test Executor (to execute and test the result with the
expected result)
 3. Test Oracle (to check the failure or success of a test)
4. Code (input code)
5. Result Analyzer
6. Log file (generates the report for each test case)
7. Test Summary report

Our proposed model is shown in figure 2. In our
proposed methodology, automated tests build the test
data, run the test and examine the result automatically.
By using proper test suit, tests oracle and then log is
generated. Result analyzer then analyses the log to
generate the test summary report.

The models are syntactically and semantically analyzed
using an XML parsers and Java, which are the required
mutant program

8. Experimental Result Analysis

Test Coverage is the process of identifying the extent to
which different test suites are appropriate in accessing a
full complement of the source code in testing various
components of the system.

In this experiment, four project cases (Student, Web,
Professional-L1, and Professional-L2) are studied using
XML and proposed approach. This approach is best
suited for the codes having minimum 2000 LOCs for each
project. The summary of the test case coverage analysis
is explained in the following table (Table 2) and the
graph (Fig.3).

As shown in figure 3, in our approach of Test coverage
for class and method enlarge comparatively then
traditional testing approach.

In all the four cases, our result shows a better
performance over other traditional test case coverage
tools.

Table 2: Summary of Test Coverage on Object Oriented Code

Fig-3: Comparative Performance Results

9. Conclusion & Future Work

In this paper, a new method is considered for test case
coverage analysis of object oriented programs on Java.
From this it is observed that the higher percentage of
code coverage gives the higher experimental accuracy of
test case coverage. It is also realizable if reference codes
more. So Benchmarks must be carefully designed to
include all code relevant to a full application. This
methodology and the experiment can be modified to
different object oriented programs like python, Visual
C++, etc.

Fig 2: A Schematic Model of the new Approach

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056
 Volume: 03 Issue: 09 | Sept-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 523

References

1. Rajib Mall, Fundamentals of Software Engineering.
PHI Learning Pvt. Ltd., 2009.

2. Andrew Haigh, Object Oriented Analysis & Design,
Tata McGraw Hill, 2001.

3. Code Coverage analysis at www.bullseye.com
4. P.Jalote, An integrated approach to Software

Engineering, Springer Science & Business Media,
2012.

5. Jerry Gao, Raquel Wspinoza, Testing coverage
analysis for software component validation,
Proceedings of 29th International Computer
Software & Applications. Conference
(COMPSAC’05), 2005.

6. Test Coverage at www.patersontech.com
7. Raghu Lingampally, Pankaj Jalote, A Multipurpose

Code Coverage Tool for Java, Proceedings of 40th
Annual Hawai International Conference on System
Sciences (HICSS’07), 2007.

8. Code Coverage from en.wikipedia.org
9. Khalid Alemerien and Kenneth Magel, Examining

the Effectiveness of Testing Coverage Tools: An
Empirical Study, International Journal of Software
Engineering and Its Applications Vol.8, No.5,
Pp.139-162, 2014.

10. T. W. Williams, R. Kapur, M. R. Mercer, J. P. Mucha,
Code Coverage, What does it mean in terms of
quality?, Proceedings Annual Reliability and
Maintainability Symposium, IEEE Conference
Publications, 2001.

11. M. J. Harrold, J. A. Jones, M. Pennings, S. Sinha, S. A.
Spoon, and A. Gujarathi. Regression Test Selection
for Java Software, Proceedings of the 16th ACM
SIGPLAN conference on Object Oriented
Programming, Systems, Languages, and
Applications (OOPSLA '01), 2001.

12. J. A. Jones and M. J. Harrold. Test-Suite Reduction
and Prioritization for Modified Condition/Decision
Coverage, IEEE Transactions on Software
Engineering, Vol. 29, Issue.3, March 2003.

13. M. Lyu, J. Horgan, and S. London. A Coverage
Analysis Tool for the Effectiveness of Software
Testing, IEEE Transactions on Reliability, Vol.
43, Issue. 4, Pp. 527 - 535, 1994.

14. Abdelilah Sakti, Gilles Pesant, and Yann-Gael
Gueheneuc, Instance Generator and Problem
Representation to Improve Object Oriented Code
Coverage, IEEE Transactions on Software
Engineering, Vol. 41, No.. 3, MARCH 2015.

15. Chun-Chia Wang, Wen C. Pai, Timothy K. Shih, An
Automated Object-Oriented Testing for C++,
Inheritance Hierarchy, IEEE, 1997.

16. Alan W. Williams, Robert L. Robert, A Measure for
Component Interaction Test Coverage, ACS/IEEE
International Conference on Computer Systems and
Applications, pages 304– 311, June 2001.

17. D. Nageswara Rao, M. V. Srinath, P. Hiranmani bala,
Reliable Code Coverage Technique in Software
Testing, Proceedings of the IEEE International
Conference on Pattern Recognition, Informatics and
Mobile Engineering, February 21-22, 2013.

18. McCabe, T. J., A Complexity Measure, IEEE
Transactions on Software Engineering. 1976.

