
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 09 | Sep-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1079

Iris Classification using ANN on 8 bit Microcontroller

Sanket Nartam1, Anant More2

1Research Student, Dept. of ECE, R. M. D. Sinhgad School of Engineering Pune, Maharashtra, India
2Ph.D Scholar, Dept. of ECU, K L University Guntur, AndraPradesh, India

---***---
Abstract - Conventional approach to develop embedded
applications are commonly being used today. However recent
study has revealed that techniques involving Artificial Neural
Network can be used as an alternative to develop embedded
applications. A lot of applications have benefited using them,
most common example is Google search engine, Stock market
prediction etc. ANNs are a kind of machine learning models,
inspired on the functioning of the brain can be incorporated in
low cost microcontrollers. ANN could be implemented in
number of applications related to embedded system, process
control wireless sensor networks. Few common applications
are dynamic reprogramming of sensor nodes, intelligent
sensors, auto calibration of process instruments, weather
prediction, free-fall detection etc. In this project work, we have
selected C-Mantec which is a constructive neural network
algorithm as it generates compact architecture suitable for
microcontroller implementation. For the implementation, on
embedded side we have selected 8 bit microcontroller and to
compare on faster processors python programming language
is used.

Key Words: Artificial Neural Network (ANN), Competitive
Majority Network Trained by error correction (C-Mantec),
Constructive Neural Network, 8-bit Microcontroller.

1.INTRODUCTION

From the literature survey it is found that to choose a proper
neural network architecture is difficult. Many authors have
proposed different methods to solve this problem but there
is no general rule to select the best architecture for neural
network. Trial and error methods are inefficient in terms of
computation power but are in use to develop applications of
ANN. In recent years, different constructive algorithms and
techniques have surfaced. In Conventional neural network,
(NN) training algorithms (such as Back propagation) need to
define the NN architecture before it can start learning [2].

Constructive algorithm needs a minimum neural network
architecture to be defined at the start. It adds layers,
connections and nodes during the training, as required by
the given problem. Thus, it produces neural network
architecture which is compact.

Embedded applications involve the use of 8 bit, 16 bit and 32
bit microcontrollers. This microcontroller has limitations in
terms of memory and computational power. Moreover
dedicated hardware such as shifter is used to increase the
capability of computation. Considering the memory

constraints the neural network algorithm should produce
compact neural network architecture. We have selected C-
Mantec algorithm as it has better generalization ability. In
addition, it produces very compact network architecture. C –
Mantec algorithms do have a built in filtering method which
avoids over fitting problems.

In the project work, we have selected ATMEGA328P which is
Atmel 8-bit AVR RISC-based microcontroller. Complete
processing of the algorithm is done on 8 bit microcontroller,
operating on 16 MHz clock frequency having 2KB of SRAM.
The reason for selecting 8 bit microcontroller was basically
to populate the capability of C-Mantec algorithm to work on
low end devices. To demonstrate we have selected, Fisher’s
Iris data base. The data set contains 3 classes of 50 instances
each, where each class refers to a type of iris plant. One class
is linearly separable from the other two; the latter are not
linearly separable from each other [2].

The paper is structured as follows, firstly we will briefly
discussed about C-Mantec algorithm and its steps. In later
sections the methodology and results are discussed.

2. C-Mantec Algorithm

In Competitive Majority Network Trained by Error Correction
(C-Mantec) algorithm is a neural network constructive
algorithm which works on competition between neurons. It
uses stable modified perceptron learning rule. The Thermal
perceptron rule is responsible for providing stability to
acquired knowledge. The network architecture grows
keeping the old information and neurons compete for new
incoming information. The effect of competition is such that
the new neuron can still learn information, provided the
incoming information is quite similar to the information
saved. This is one of the major distinguishing factor
compared to the existing constructing algorithms .Briefly in
this algorithm there is a completion between neurons to
learn the new incoming information. As C-Mantec is a
constructive neural network algorithm, it avoids the trial and
error method of selecting the network architecture. It
generates the architecture of network as the learning
proceeds [2].

The binary activation state of the neuron depends on the
different factors which are the actual value of the N synaptic
weights, bias, N input signals

 (1)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 09 | Sep-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1080

Where, φ is the synaptic potential of the neuron defined as:

 (2)

The modification of the synaptic weights in thermal
perceptron learning rule, ∆ωi is done runtime according to
the following equation

 (3)

Where, ψ represents the value of input unit I connected to the
output by weight ωi and t is the target value of the presented
input.

 (4)

Table -1: Results on MCNC function

Functions
Results on MCNC functions

Neurons Theoretical Neurons Practical

XOR2 2±0 2±0

XOR3 3±0 3±0

Cm82f 3±0 3±0

Cm82ah 3±0 3±0

9symml 3±0 3±0

Z4ml24 1±0 1±0

3. STEPS OF ALGORITHM

Step 1: Create Initial Network by adding one hidden layer
neural network with a single neuron and an output neuron
[2].

Step 2: Initialize Parameters and Set parameter Values and
Initialize Counters [2].

gfac {0.05 to 0.5}

Imax {1000- 100000}

T0= N

T =T0

Step 3: Check the output of the Network by giving a random
input pattern [2].

Step 4: Check for correct classification

Compute the value of Tfac for all existing hidden neuron
which has wrongly classified input presented. Modify the
weight of neuron, with the largest value of Tfac, such that
this value should be larger than the value of the parameter
gfac. Reduce the internal temperature of the modified neuron.
Check for no neuron with the value of Tfac larger than gfac.
After that add a new neuron to the hidden layer that will
learn the actual example. Next step is to, reset T to T0 and I to
Imax [2].

Step 5: Loop back until all patterns are classified loop back to
step 3[2].

4. METHODOLOGY

We have implemented C-Mantec algorithm in a
microcontroller suitable for different embedded applications.
Network is trained by providing training patterns. The neural
network architecture generated is tested with test patterns
and checked if the outputs are classified properly [2]. To
verify the correctness of the implemented the algorithm we
tested the output, in terms of number of neurons generated.
For that we have compared the results of the original
published [2].

5. IMPLEMENTATION

The data base contains the following attributes: Sepal length
in cm- It is Float number in 1.0 to 9.9 which requires 4 Bytes.
Sepal width in cm- It is Float number in 1.0 to 9.9 which
requires 4 Bytes. Petal length in cm- It is Float number in 1.0
to 9.9 which requires 4 Bytes. Petal width in cm- It is Float
number in 1.0 to 9.9 which requires 4 Bytes .Class: - Require
1 Byte.17 bytes for 1 pattern is required.17x150 patterns of
dataset requires = 2550 bytes. Max pattern that can be
accommodated=Size of Eeprom-1/No of bytes needed for 1
pattern (1024-1)/17bytes= 60.176 rounded to 60 patterns.
So 20 samples of each class can be taken.

In order to accommodate all the patterns we have proposed
two solutions so that all 150 patterns can be used for
implantation in microcontroller. In first instead of taking
input parameters as a float we have taken it is integer value.
For example, Sepal length 4.5 is converted to 45 and the
stored in the Eeprom memory. So instead of taking up 4 bytes
now only 1 byte can be sufficient.

 Steps:-

1) All Input data is multiplied by 10 and stored in Eeprom.

2) During Calculation: Calculate by dividing with 10 to
compensate.

3) 5 bytes required to store 1 pattern: 150x10= 750 bytes
are needed.

This gives us a 75% saving in the Eeprom memory.

In Solution 2 we have proposed a shuffling mechanism where
instead of taking a larger array in a microcontroller only 10
patterns of inputs are read into an array. Training of the
algorithm is done on those patterns and the then the next set
of patterns are taken into array. This helps in reduction of the
number of variables in the RAM.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 09 | Sep-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1081

Fig -1: Flowchart for solution 2

6. RESULTS

We verified the results published of the original paper as seen
in table I in terms of generated neurons index from the
functions as given in the MCNC benchmark database. The
results of classification of IRIS plant database are as shown in
Table III. We verified the training time required for the
algorithm to get started but the training time was more as per
the expected results. The reason could be data conversion
techniques used and refreshing the array parameters
frequently to accommodate in 2KB of SRAM.

Table -2: Classification Results

Parameter
Classification

Patterns Provided
Patterns Classified

Correctly

Iris Setosa 50 48

Iris Versicolour 50 49

Iris Virginica 50 47

Table -3: Average Time Analysis

Parameter

Platform

Implementation on I3
processor

Implementation on
Atmega 8

Number of Neuron 5
5

Training Time 14.154 s
3.6 min

7. Conclusion

C-Mantec algorithm when compared with other algorithms
gives very compact architectures with good prediction
capabilities. In addition, algorithm is constructive there is no
trial and error method involved in selecting a proper neural
network architecture. Due to which the programming part
from the microcontroller point of view can be simplified
easily. The algorithm suits completely for the low end
microcontroller which has constraints in terms of processing
ability and memory. Given the existence of devices with much
more powerful computing resources than the considered
board, the results shows the potential of the proposed
algorithm. The training time required for the microcontroller
implementation can be reduced by using more efficient logic.
A dedicated hardware block for multiplication and division
could speed up the training in embedded application. A
generic stack for this algorithm could be developed so that it
could be easy to port the algorithm in different applications.

REFERENCES

[1] FranciscoOrtega-Zamoranoa,*,JoséM.Jereza,

JoséL.Subirats a, IgnacioMolinab, LeonardoFranco a,
”Smart sensor/actuator node reprogramming in
changing environments using a neural network
model”Journal on Engineering Applications of Artificial
Intelligence Elsevier ,Volume 30 April 2014, Pages 179–
188

[2] Sanket Nartam and Prof. Mr Anant More, “Neural
Network based alternate approach for embedded
applications”, e-PG Project Exhibition 2016 for M.E.
E&Tc Students under Savitribai Phule University of
Pune, June2016.

[3] José L. Subirats, Leonardo Franco ∗, José M. Jerez,” C-
Mantec: A novel constructive neural network algorithm
incorporating competition between neurons” Journal on
Neural Networks, Elsevier 26 (2012) 130–140.

[4] Francisco Ortega-Zamorano, José M. Jerez, and Leonardo
Franco, Senior Member, IEEE. FPGA Implementation of
the C-Mantec Neural Network Constructive Algorithm”.
IEEE Transactions on Industrial Informatics, vol. 10, no.
2, May 2014.

