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Abstract - Neuro endocrine tumor (NET) is one of the 

most common cancers leading to death worldwide. Many 
studies has emphasized the importance of Ki-67 as the 
proliferation marker in the neuro endocrine tumor. 
Automatic Ki-67 assessment is very challenging due to 
complex variations of cell characteristics. In this paper, we 
propose an integrated learning based framework using 
Fuzzy C means clustering (FCM) for accurate automatic Ki-
67 counting for NET and to localize both tumor and non-
tumor cells. Unlike the non-fuzzy clustering algorithms, FCM 
is less sensitive to noise and give better results for 
overlapped data sets. For feature selection t-test algorithm 
is used. The t-test has been used to rank features for 
microarray data. For multi-class problems, t – statistics 
value for each gene of each class is calculated by evaluating 
the difference between the mean of all the classes, where the 
difference is standardized by the within class standard 
deviation. The automatic Ki-67 counting is quite accurate 
compared with pathologists’ manual annotations. This is 
much more accurate than existing methods. 
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1.INTRODUCTION 
 
Neuro endocrine tumor (NET) is one of the most common 

cancers leading to death worldwide. Personalized diagnosis 

and treatment have significant influences on the survival of 

the NET patients. Recently, Ki-67 proliferation index, which 

is represented as the ratio between the numbers of 

immunopositive tumor cells and all tumor cells, is 

increasingly considered as a valid biomarker to evaluate 

tumor cell progression and predicting therapy responses [1]. 

Manual Ki-67 assessment is subject to a low throughput 

processing rate and pathologist-dependent bias. Computer-

aided pathological image analysis is a promising approach to 

improve the objectivity and reproducibility. However, it is 

difficult to access automatic and accurate Ki-67 counting in 

digitized NET images, since the complex nature of 

histopathological images, such as variations of image texture, 

color, size, and shape, presents significant challenges for 

accurate automatic Ki-67 counting. In addition, tumor and 

nontumor cells are usually clustered such that the nontumor 

cells are also counted using many traditional methods, which 

lead to large counting errors. 

     In Ki-67 staining for NET, the color of immunonegative to 

immunopositive tumor cells ranges from blue to brown in 

terms of the stage of Ki-67 proliferation. Many computerized 

methods rely on the color feature to detect and classify cells 

for Ki-67 scoring. Al-Lahham et al. [1] first applied K-means 

clustering to a transformed color space, and subsequently 

used mathematical morphology and connected component 

analysis to segment and count cells on Ki-67 stained 

histology images. However, it is difficult for these methods to 

differentiate tumor from non-tumor and to handle touching 

cells. Recently, Nielsen et al. [2] first used a MART1 

verification strategy to select tumor areas, and calculated 

cell areas and irregularity to classify positive and negative 

tumor cells that are obtained by using intensity-based 

thresholding functions. In order to handle touching cells, 

Loukas et al. [3] detected all cells using a Laplacian-of-

Gaussian (LoG) filter followed by a distance map 

transformation for cancer cell counting, and then applied 

principal component analysis to a transformed color space 

for immunopositive and immunonegative cells. Markiewicz 

et al. [4], [5] employed the watershed algorithm to separate 

touching cells and a support vector machine (SVM) classifier 

to differentiate immunopositive from immunonegative cells, 

and similar methods are also presented in [6] and [7]. 

However, these methods cannot precisely differentiate 

tumor from non-tumor cells and separate touching cells 

simultaneously. The Aperio image analysis software is 

utilized in [8] for the assessment of Ki-67 proliferation index, 

but the nontumor cells such as lymphocytes and stromal 

cells need to be excluded manually, and therefore it is not 
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completely automatic. Besides the aforesaid methods, more 

general and sophisticated cell detection algorithms can also 

be used to estimate Ki- 67 proliferation index. A K-nearest 

neighbor-based graph is proposed in [9] for Ki-67 hot spots 

detection on glioblastoma. Watershed and its variants are 

another popular group of cell detection and segmentation 

methods. For cells that usually exhibit circular or 

approximately circular shapes, radial voting has been widely 

used. Parvin et al. [10] proposed an iterative radial voting 

(IRV) algorithm based on oriented kernels to localize cell 

nuclei, in which the voting direction and areas are 

dynamically updated within each consecutive iteration. A 

computationally efficient single-pass voting (SPV) for cell 

detection is reported in [11], which applies mean shift 

clustering instead of iterative voting to final seed 

localization. 

     The aforementioned general cell detection and 

segmentation algorithms are not specifically designed to 

calculate Ki-67 proliferation index. The non-tumor cells such 

as lymphocytes, stromal, and/or epithelial cells thus often 

need to be excluded manually. Meanwhile, additional steps 

need to be designed to separate immunonegative and 

immuopositive tumor cells. In this paper, we propose an 

integrated learning-based algorithm (see Fig. 1) for 

automatic scoring of Ki-67 proliferation index of NET, with 

addressing the problems earlier simultaneously. In order to 

accurately and simultaneously localize a large number of 

cells, we propose a robust and efficient fuzzy C means 

algorithm to detect cell seeds (geometric centers). Then, an 

efficient online sparse dictionary learning algorithm is 

applied to select a set of representative training samples. 

Finally, tumor and non-tumor cells are separated by a 

trained SVM classifier with both the cellular features and 

regional structure information. The Ki-67 proliferation index 

is calculated based on the classification results of 

immunopositive (brown cells) and immunonegative (blue 

cells) tumor cells. 

II.METHODS 
 

      Our novel integrated learning-based algorithm for 

automatic Ki-67 scoring of NET contains the following steps: 

1) Robust cell detection and boundary delineation followed 

by cellular features extraction. 2) A learning-based region 

segmentation algorithm is used to generate a probability 

map to differentiate tumor and non-tumor regions. 3) Both 

the cellular features and regional structure information are 

combined to provide accurate tumor cell detection. 4) The 

Ki-67 proliferation index is finally calculated using a 

classifier with color histograms to separate immunopositive 

(brown cells in Ki-67 staining) and immunonegative (blue 

cells in Ki 67 staining) tumor cells. The whole algorithm 

flowchart is shown in Fig. 1. 

 

 

Fig.1. Workflow of the proposed automatic Ki-67 
proliferation    index scoring system 

 

A. Automatic Cell Detection 
 

     Robust cell detection is achieved by finding the geometric 

centers (seeds) of the cells. SPV in [11] localizes the seeds by 

performing a gradient magnitude-weighted majority vote, 

but it is not able to efficiently handle cell size and shape 

variations, since its single voting area and mean shift 

clustering with a unit bandwidth are not appropriate for 

different types of cells in one image. For a specific pixel, SPV 

only sums its own votes without counting those votes from 

its neighbors, which are important in localizing cell seeds.  

In addition, the gradient magnitudes are sensitive to noise, 

and pixels inside the cells may have much smaller 

magnitudes. Intuitively, the pixels close to cell centers should 

obtain higher weights than those near cell boundaries. Based 
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on these observations, we introduce a region-based 

hierarchical voting in a distance transform map, which 

applies a Gaussian pyramid to the voting procedure to 

handle scale variations. 

       Let T(x, y) denote the original image, and ∇T(x, y) be the 

gradient, for each pixel (x, y) at layer l the proposed cell 

detection algorithm defines its cone-shape voting areas Al  

with vertex at (x, y) and votes along the negative gradient 

direction:  

 

where θ represents the angle of the gradient direction with 

respect to x- axis. A confidence map V (x, y) is calculated by 

weighting the distance transform map with a Gaussian 

kernel  g(m, n, μx, μy, σ) 

 

 
where  S represents the set of all voting pixels, Al (m, n) 

denotes the cone-shape voting area with vertex (m, n) at 

layer l, and it is defined by the radial range (rmin, rmax) and 

angular range Δ, Fig. 2(a). I(x) = I[(x, y) ϵ Al (m, n)] is the 

indicator function, and Cl (x, y) represents the distance 

transformation map at layer l, which can be the Euclidean 

distance transform. The isotropic Gaussian kernel is 

parametrically defined with  

 

and scalar σ, which is used to encourage the voting toward 

the cell central regions. Fig. 2(c) shows that pixels with 

higher Cl (x, y) values near the geometric center of a cell will 

enhance their contributions in (1). For each pixel (x, y), (1) 

provides a weighted sum of all the voting values created by 

its neighboring pixels whose voting areas contain (x, y) [Fig. 

2(a)], instead of only counting those votes created by its 

own. After the confidence map is generated [Fig. 2(e)], fuzzy 

C means clustering is employed to calculate the final seed for 

each individual cell and segmentation, Fig. 2(f). 

B. Fuzzy C means clustering 
 

      Fuzzy c-means (FCM) is a method of clustering which 

allows one piece of data to belong to two or more clusters. 

This method is frequently used in pattern recognition. It is 

based on minimization of the following objective function 

,                  (2) 

where m is any real number greater than 1, uij is the degree 

of membership of xi in the cluster j, xi is the ith of d-

dimensional measured data, cj is the d-dimension center of 

the cluster, and ||*|| is any norm expressing the similarity 

between any measured data and the center. Fuzzy 

partitioning is carried out through an iterative optimization 

of the objective function shown above, with the update of 

membership uij and the cluster centers cj by: 

,         

This iteration will stop when , 

where ε is a termination criterion between 0 and 1, 

whereas k is the iteration steps. This procedure converges to 

a local minimum or a saddle point of Jm. The algorithm is 

composed of the following step: 

1. Initialize U=[uij] matrix, U(0) 
2. At k-step: calculate the centers vectors C(k)=[cj] with 

U(k) 

                            (3) 

3. Update U(k) , U(k+1) 

                     (4) 

4. If || U (k+1) - U (k) ||<  then STOP; otherwise return to 
step 2 
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Fig. 2. Procedure of hierarchical voting-based seed detection. (a) Illustration of voting area and direction, (b) original image, (c) distance 

map, (d) confidence map, (e) mean-shift clustering (the circle represents one point and the arrow denotes the mean-shift vector) on the 

final confidence map, (f) final seeds. 

Compared to mean shift clustering, fuzzy C means gives best 

result for overlapped data set and comparatively better than 

mean shift algorithm and unlike mean shift where data point 

must exclusively belong to one cluster center here data point 

is assigned membership to each cluster center as a result of 

which data point may belong to more than one cluster 

center. 

C. Training Sample Selection and Online Dictionary 
Learning 

 
     Based on the results of cellular segmentation, a classifier 

can be trained to determine the segmented cell category 

(tumor or non-tumor cells) with the following cellular 

features in (listed in Table I Stage I): geometric descriptors, 

color intensity, and cell shapes that are represented by 

Fourier shape descriptor [12]. In total, we have extracted p = 

5 + 9 × 3 + 80 = 112 features, where 3 represents R,G, and B 

color channels, and 80 denotes  the first 20 harmonics (each 

corresponds to four coefficients) that are chosen in the 

Elliptical Fourier transformation. 

      For more efficient and robust training, we propose to 

choose a set of representative samples that can approximate 

the entire training set. This is a data summary problem that 

can help to reduce the number of training samples, improve 

the computational efficiency, and more important, to 

increase the robustness by removing outliers from the 

original training set. 

 A 

K-selection dictionary learning algorithm is chosen to select 

K representatives {φk ∈ RWx1} to form a dictionary Φ ∈ RWxK  

from the original dataset 

  

where φK  is the kth basis vector selected from the original 

training sample set, fi ∈ RWx1 denotes the ith feature vector, ξi 

∈ RKx1  is the sparse coefficient with a weight θ, and ei ∈ RKx1  

represents the distance between fi and the basis vectors. 

Unlike the popular sparse dictionary learning method KSVD, 

where the dictionary bases are not consisted with the 

original samples, (5) enforces the bases to be directly 

selected from the dataset. 
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      The training data often do not come in one batch. Instead, 

they are often collected from different pathologists in 

different institutes in a sequential mode. It is not only time 

consuming but also impractical to retrain the dictionary 

whenever new training samples arrive. To deal with training 

in a sequential mode, the dictionary Φ is required to be 

online updated for classification. Recreation of the dictionary 

using the whole dataset including the old { fi }, i = 1, 2, . . .,N 

and new { fi
new}, i = 1, 2, . . .,M data are neither efficient nor 

feasible. Because the selected K representatives can 

efficiently describe the old dataset, it is sufficient to evaluate 

whether or not Φ are good representatives for { fi
new}. Thus, 

we can solve the optimization problem on a reduced dataset 

 

where { fi
new}, i = 1, 2, . . .,M are the new data, and { fi

new}, i = M 

+ 1,M + 2, . . . , M + K are the previously selected 

representatives Φ.K’ denotes the number of the 

representatives need to be selected for the new dataset that  

contains both old and new training samples. The data size in 

(6) is M + K which is much smaller than M + N (N represents 

the size of the original training dataset), and hence the 

optimization problem in (6) can be solved more efficiently. 

The online learning strategy enables the dictionary to be 

properly scaled up to represent a dynamic set of samples 

while still keeping the efficiency. 

D. Three-Stage Learning Based Classification  
 

       After an accurate segmentation and dictionary learning 

of all the cells in NET, a three-stage learning-based scheme 

combining cellular features and regional structure 

information is designed to differentiate tumor from non-

tumor cells, and immunopositive from immunonegative 

tumor cells for accurate Ki-67 counting. The reasons why we 

use multiple stages to calculate Ki-67 proliferation index are: 

1) Speed: first, it is much easier and faster to compute 

cellular features in Stage I than the texture in Stage II. 

Second, many typical non-tumor cells will achieve relatively 

low-category probabilities using the simple cellular feature-

based classifier in Stage I and can then be removed to avoid 

further processing. The subsequent classifiers will only need 

to focus on difficult cases. This cascade pipeline structure 

can dramatically improve the speed. 2) Flexibility: the 

feature computation in Stages I and II are independent and 

either one can be replaced with other methods without 

changing the whole framework. 3) Evaluability and clinical 

purpose: in this pipeline framework, all intermediate results 

can be easily exported and presented to doctors for 

evaluation and clinical purpose. 4) Scalability: we have 

specifically designed these three-stage pipeline structure 

instead of an integrated module like classification tree 

considering future parallel implementation using grid 

and/or cloud. 

Stage I: As shown in Table I,  112 features are extracted for 

each sample. In order to select the most discriminative 

features for cell classification, a sparse representation model 

is applied to the original feature space 

 

where N = N+ + N-  represents the number of training samples 

containing N+  tumor and N-  non-tumor cells, and φi ∈  RWx1  

is the extracted feature with W = 112 denoting the original 

dimension. b0  is the intercept and η represents the sparsity 

parameter. The binary vector a ∈ R(N + +N −)×1 represents the 

labels of cells used for training: ai = +1 for tumor and ai = −1 

for nontumor. Due to the l1  norm constraint, the solution b*∈ 

RW ×1 to (7) is sparse with nonzero elements corresponding  

to the selected discriminative features. Based on b∗  with L 

nonzero elements, we can project all the features onto a low-

dimensional discriminative subspace. An SVM classifier is 

learned to predict the cell category in this transformed 

sparse feature space. We remove those cells with low 

probabilities that often correspond to typical non-tumor 

cells before the cell classification, such that the second 

classifier would focus on a reduced dataset. 

Stage II: In Stage I, only cellular features are considered, and 

some non-tumor cells (like lymphocytes) can be classified as 

tumor cells by mistake. The lymphocytes usually exhibit 

certain structural pattern on the specimens, which can be 

described with local structural features. To improve the 

classification accuracy, texton [13] feature is utilized to 

model the different structural level features between non-

tumor and tumor regions. A multiple scale Schmid filter bank 

[14] is used for image filtering 

 

where τ is the number of cycles of the harmonic function 

within the Gaussian envelop of the filter and 
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 r = . A texton library is constructed using K-

means on 20 randomly selected NET specimens using the 

image filtering results with Schmid filter bank. Considering 

computational efficiency, an integral histogram [15] is 

utilized to calculate the multiscale windowed texton 

histogram. Using the texture classification-based probability 

map, each individual cell will obtain a score to evaluate its 

probability belonging to tumor or non-tumor cells (see Table 

I). In addition, the ratio between the probability of one cell 

and the probability average for all its neighboring cells 

provides a measurement of cell category distribution. As one 

can expect, the lymphocyte regions will exhibit higher 

probability to be classified as non-tumor patterns, which can 

be discarded before Stage II. In this way, the classifier in 

Stage II will focus more on the challenging cases. This 

improves both computational efficiency and classification 

accuracy. 

       In Stage II, the mean/standard deviations of pixel 

probabilities in each cell, and the percentage of probability 

summation of one cell over the probability average for all 

cells in its local region are calculated. These statistical 

features are concatenated with the previously predicted 

cellular probabilities in Stage I to train a second SVM 

classifier. The output will produce the labels to differentiate 

tumor from non-tumor cells. 

Stage III: Based on the classification in Stage II, the final step 

is to separate immunopositive from immunonegative tumor 

cells. This is achieved by training a final classifier for all the 

Ki-67 positive staining cells using the features listed in Stage 

I in Table I, and cellular intensity histogram (a 16-bin 

intensity histogram separately for each channel, as shown in 

Stage III in Table I) to differentiate the immunopositive and 

immunonegative tumor cells. 

III. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Cell Detection 

 
     Both qualitative and quantitative analyses are conducted 

for the proposed cell detection algorithm. In Fig. 4, 

thousands of cells are correctly detected and segmented on 

several randomly selected image patches, which contains 

both tumor and non-tumor cells. 

     IRV and SPV may fail on elongated cells due to the 

assumption of approximate circular objects. In addition, it is 

not easy for IRV and SPV to create a general rule for 

parameter selection on one single image containing cells 

with different sizes and shapes. The proposed method is 

compared with four recent state of the arts: IRV [10], 

SPV[11] and the results are shown in Fig.5. The proposed 

algorithm is more robust with respect to the variations of 

cell scale and intensity. This can be attributed to the region-

based hierarchical voting on the distance map. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Results of (a) cell detection, (b) segmentation, and (c) 

classification on several randomly selected image patches. Some 

small patches are zoomed in for better illustration in (d). Cells with 

yellow/red contours represent immune positive/immunonegative 

tumor cells. 
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Fig. 5. Geometric centers of cells (seeds) detection on several randomly selected image patches. Row 1 is the original image patches. Rows 2, 3 

and 4 correspond to the automatic detection results produced by IRV [10], SPV [11], and the proposed algorithm, respectively. The missing or 

false seeds are highlighted with black dashed rectangle.

B. Ki-67 scoring 

In the experiments at Stage I, circularity ratio, axis 

ratio, color mean, standard deviation, kurtosis, contrast, 

correlation, and homogeneity are selected by the sparse 

representation mode as the most discriminative features to 

separate tumor from non-tumor cells. This indicates that for 

Ki-67 staining, tumor cells intend to exhibit more circular 

shapes than non-tumor cells. Non-tumors cells often have 

more inhomogeneous textures and lighter staining. The first 

SVM classifier uses a Gaussian kernel (the parameter σ = 0.3 

and the penalty c = 1) with these selected discriminative 

features. Combined with the texton histogram-based 

probabilities, a second SVM classifier is trained to separate 

tumor and non-tumor cells.  
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C. Performance Analysis      

      The proposed system is compared with an existing 

system [16] and a graph is plotted showing the accuracy of 

the proposed system, Fig. 6. Our method produces best 

performance in terms of mean values, gives smaller variance, 

which demonstrates the strong robustness of the proposed 

automatic Ki-67 counting algorithm. Proposed method can 

reliably separate touching cells, and many lymphocytes are 

not discriminated from the true immunopositive tumor cells 

in existing methods, while in proposed algorithm these 

lymphocytes are correctly recognized based on accurate 

cellular level segmentation and classification. 

 

Fig.6. Performance Analysis 

IV. SIMULATION RESULTS 

 

 

 

 

Fig.8. GRAYSCALE IMAGE 

 

 

Fig.9. SMOOTHENED IMAGE 

 

Fig.10. CLUSTERING INDEX

Fig.7. INPUT IMAGE                                                                                        
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             Fig.11. ENHANCED IMAGE 

 

         Fig.12. SEGMENTED IMAGE 

 

        Fig.13. CLASSIFIED IMAGE 

 

       Fig.13. IMMUNOPOSITIVE REGION 

 

V. CONCLUSION 

 

    In this paper, we have introduced an automatic 

algorithm for Ki-67 scoring of digitized NET images. The 

novel cell detection algorithm can efficiently and 

accurately detect thousands of cells on a digitized NET 

image with Ki-67 staining. Furthermore, a three-stage 

learning-based approach is designed to differentiate tumor 

cells from non-tumor cells and immunopositive and 

immunonegative tumor cells for an automatic, accurate, 

and robust quantification of Ki-67 proliferation index. 
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