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Abstract - The given thesis puts forth the application of 
various methods for optimal control of power flow in a 
network of microgrids(MGs). The methods used for solving 
the mathematical formulation of Microgrid control are 
Steepest Descent method, Newton method and Differential 
Evolution method. In the above first three come under a 
group of gradient descent methods where as the differential 
evolution is an Evolutionary Algorithm. A comparative study 
is performed by calculating the cost function for each of the 
three methods. We have taken a case of four Microgrids 
collaborating in a network. In the proposed work, the 
optimal control microgrid system with Energy storage 
systems are considered. The gradient descent methods and 
evolutionary algorithm are applied and an optimized result 
for energy storage systems are obtained. It is observed that 
the results obtained are good and comparable. 
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I. INTRODUCTION 

Classical gradient methods and evolutionary algorithms 
represent two very different classes of optimization 
techniques. In optimization, a problem is typically specified 
by a set of parameters and an objective function, which is 
also called a fitness function in the context of evolutionary 
algorithms. The goal of the optimization process is to find a 
set of variables such that the objective function is optimum. 
In the special case of continuous parameter optimization in 
which all parameters are real valued, Newton developed the 
gradient method, which is also known as the method of 
steepest descent. In unimodal functions, the optimum can be 
found by moving along the local gradients, which leads to the 
following formulation of the steepest-descent method. It is 
obvious that steepest-descent algorithms can be applied only 
to continuously differentiable objective functions. If either 
the objective function is not continuously differentiable or if 
the function is not (completely) given due to limited 
knowledge, which often occurs in real-world applications, 
the designer has to resort to other methods, such as 
evolutionary algorithms. Evolutionary algorithms are a class 
of stochastic optimization and adaptation techniques that 
are inspired by natural evolution. Each evolutionary 
algorithm is designed along a different methodology. Despite 
their differences, all evolutionary algorithms are heuristic 
population-based search procedures that incorporate 
random variation and selection. 

The optimal control of  Microgrid Networks  is an active field 
for research and development. There are several papers and 
books related to the Microgrids and optimal control 
concepts. The basic concepts and non-classical gradient 
methods are learnt from [1]. The example fictional Microgrid 
network was developed with reference to [15].  [3]-[7] are 
deal with various views and applications of numerical 
optimization techniques. [12] is used to study and develop 
the mathematical formulation of optimal control problems. 
Differential evolution is one of the population based 
algorithm. It is a stochastic method. [13]-[14] are the 
discussions regarding the application of evolutionary 
algorithms and differential evolution in specific towards the 
global optimization of optimal control problems. These 
methods to the best of our knowledge, it has never been 
applied to control Microgrid Network. The objective is to 
minimize the cost and energy flow of the Microgrid Network. 
The problem is solved considering constraints related to 
each State vector. The rest of this work is organized as 
follows. Section II presents Steepest Descent method. The 
Newton method is described in Section III. The Differential 
Evolution method is discussed in section IV. In Section V, an 
application on microgrid network problem is presented. The 
results are Finally, conclusions are drawn in Section VI. 

II. Gradient descent methods 

Gradient descent is a first-order optimization algorithm. To 
find a local minimum of a function using gradient descent, 
one takes steps proportional to the negative of 
the gradient(or of the approximate gradient) of the function 
at the current point. If instead one takes steps proportional 
to the positive of the gradient, one approaches a local 
maximum of that function; the procedure is then known 
as gradient ascent. 

Gradient descent is also known as steepest descent, or 
the method of steepest descent. Gradient descent should not 
be confused with the method of steepest descent for 
approximating integrals. 

Gradient Descent Method is a first-order optimization 
algorithm. To find a local minimum of a function, one takes a 
step proportional to the negative of the gradient of the 
function at the current point. Gradient is the slope of a 
function. Optimization is finding the “best” value of a 
function which is the minimum value of the function. The 
number of “turning points” of a function depend on the order 
of the function.  Not all turning points are minima. The least 
of all the minimum points is called the “global” minimum. 
Every minimum is a “local” minimum. 

https://en.wikipedia.org/wiki/Category:First_order_methods
https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Local_minimum
https://en.wikipedia.org/wiki/Gradient
https://en.wikipedia.org/wiki/Local_maximum
https://en.wikipedia.org/wiki/Local_maximum
https://en.wikipedia.org/wiki/Method_of_steepest_descent
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               Figure 1 : Global Optimum. 

Basic principle is to minimize the N-dimensional function by 
a series of 1D line-minimizations: 

                                     (1) 

The steepest descent method chooses pk to be parallel to the 
gradient             

 

                (2) 

Step-size αk is chosen to minimize f(xk + αkpk).  

For quadratic forms there is a closed form solution: 

                      

                                 (3) 

 

The gradient is everywhere perpendicular to the contour 
lines. After each line minimization the new gradient is 
always orthogonal to the previous step direction (true of any 
line minimization). Consequently, the iterates tend to zig-zag  
down the valley in a very inefficient manner. 

 

Figure 2 Steepest Descent Paths 

III. Newton method 

Newton Method is one of the direct root methods. The 
necessary condition for f (λ) to have a minimum of λ∗ is that f 
′ (λ∗) = 0. The direct root methods seek to find the root (or 
solution) of the equation, f ′(λ) = 0. 

Consider the quadratic approximation of the function f (λ) at 
λ = λi using the Taylor’s series expansion: 

21
( ) f( ) f'( )( ) "( )( )

2
i i i i if f           

         (4)
 

By setting the derivative of above equation equal to zero for 
the minimum of f (λ), we obtain 

'( ) f'( ) f"( )( ) 0i i if        
                       

(5) 

    

If λi denotes an approximation to the minimum of f (λ), 
above equation can be rearranged to obtain an improved 
approximation as 

1

'( )

"( )

i
i i

i

f

f


 


                   (6) 

Thus the Newton method, above equation is equivalent to 
using a quadratic approximation for the function f (λ) and 
applying the necessary conditions. The iterative process 
given by above equation can be assumed to have converged 
when the derivative, f’(λi+1), is close to zero: 

1| f'( ) |i  
                    (7)                                                           

 

where ε is a small quantity. The convergence process of the 
method is shown graphically in below figure. 

Expand f(x) by its Taylor series about the point xk   
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where the gradient is the vector  

         
                         (8) 

and the Hessian is the symmetric matrix  

   
                                     (9) 

For a minimum we require that  , and so with 

solution   . This 

gives the iterative update  

If f(x) is quadratic, then the solution is found in one step.  

                                        10
 The method has quadratic convergence (as in the 1D 

case). The solution  is guaranteed to 
be a downhill direction. Rather than jump straight to the 
minimum, it is better to perform a line minimization which 

ensures global convergence    

General non linear optimization Algorithm : 

 Minimize f(x) subject to: 

where the objective function 
and constraints are nonlinear. 

 For a given  approximate Lagrangien 
by Taylor series → QP problem 

 Solve QP → descent direction   
 Perform line search in the direction    → 

 

 Update Lagrange multipliers →  
 Repeat from Step 1. 

IV. Differential Evolution (DE) 

This method is proposed by Price and Storn in 1995. It is 
considered as one of the most powerful evolutionary 
algorithms for real number function optimization nowadays. 
DE’s Main Idea: (DE/rand/1). Generate trial vectors (v) using 
the following formula: 

                          

 

It elegantly replaces the two operations: 

1. Crossover 
2. Mutation 

 

It has less parameter to be tuned and self-organizing ability. 
Given an optimization problem, traditional optimization 
algorithms can be applied to obtain a optimum. However, in 
the real world, we are often interested in not only a single 
optimum, but also other possible global and local optima. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 : Flowchart for DE 

 

                   Figure 4 : Algorithm for DE 
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MUTATION 

Each of the N parameter vectors undergoes mutation, 
recombination and selection. Mutation expands the search 
space. For a given parameter vector xi,G randomly select 
three vectors xr1,G, xr2,G and xr3,G such that the indices i, 
r1, r2 and r3 are distinct. Add the weighted difference of two 
of the vectors to the third vi,G+1 = xr1,G + F(xr2,G − xr3,G) .  

The mutation factor F is a constant from [0, 2] • vi,G+1 is 
called the donor vector . 

Recombination incorporates successful solutions from the 
previous generation. The trial vector ui,G+1 is developed 
from the elements of the target vector, xi,G, and the elements 
of the donor vector, vi,G+1. Elements of the donor vector 
enter the trial vector with probability CR.  The target vector 
xi,G is compared with the trial vector vi,G+1 and the one with 
the lowest function value is admitted to the next generation. 
Mutation, recombination and selection continue until some 
stopping criterion is reached  

The control parameters of Differential Evolution :  

Differential Evolution in general has three control 
parameters.  

1) Population Size(NP) 
2) Crossover Rate (CR) 
3) Mutation Scale Factor(F) 

Population size (NP):  

Population Size (NP) plays a crucial role in the efficiency and 
effectiveness of Differential Evolution. Large population size 
potentially increases the population diversity and helps 
Differential Evolution to sample more regions, 
simultaneously. However, when computational budget is 
limited (which in practice usually is), increasing the 
population size will decrease the number of iterations (i.e. 
generations) and may result in early termination. In other 
words, Differential Evolution may be terminated before the 
population converges to a desirable point. The smaller 
population sizes work well. We can have faster and deeper 
convergence.  

Crossover rate (CR):  

In discrete recombination or crossover, CR value determines 
the number of decision variables of each target vector which 
must be interchanged with the corresponding variables of 
mutant vector. As a rule of thumb, small CR values can boost 
convergence speed when a few decision variables are 
interacting with each others. In turn, large CR values are 
more effective when lots of decision variables are 
interacting. 

Mutation scale factor (F): 

In Differential Evolution, the exploration exploitation 
balance is controlled by F value. As a rule of thumb, too small 
F values increase the risk of premature convergence (i.e. 
converge to an undesirable point), while too large F values 
decrease the convergence speed that degrades DE efficiency 
and may result in early termination. 

So the solution can be improved by changing the mutation 
factor F. We can obtain a faster and deeper convergence. It 
has a good adaptivity.  

PROBLEM FORMULATION  

The microgrid is supposed to be smart, in the sense that all 
the processes are measurable and the related information 
can be transmitted to a centralized decision maker in real 
time. It is assumed that each microgrid contains a local 
energy storage system (ESS), and can produce RESs power, 
supplying the consumption of a certain number of 
households. It is supposed that the instantaneous 
information on the generated and consumed power, as well 
as on the stored energy, can be sent in a negligible amount of 
time toward a central controller. After the acquisition of all 
the information from all microgrid and the specific 
computations, the central controller can send the 
information on the optimal control of the power flows to the 
control unit of each microgrid. In a microgrid, the ESS is 
mostly used to compensate the power fluctuations in the 
local microgrid itself. It is assumed that an ESS is available in 
each microgrid and that the ESS state operates in connection 
with other Microgrids. The evolution over time of the energy 
stored in the microgrids network is supposed to be 
described, for the i microgrid, by the following continuous 
state equation:  

' (t) (t) b (t)i i i i iX X u                                 (11)

                                                                          

0 0(t ) (t)i iX X

    

 

Where 

 1) (t)iX  is the ESS state at instant t in the ith
 MICROGRID 

[kWh], defined as the storage system level with respect to an 
optimal working level reference value. It is supposed that 

each element of (t)iX may assume positive as well as 

negative values;  

2) i  is a parameter related to the efficiency of the ESS at 

the ith
MICROGRID;  

3) 0i
X  is the ESS state at the initial time 0t ; 
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 4) b i  is a vector which expresses the connections that are 

established with the ith
MICROGRID;  

5) (t)iu [kWh] is the control vector whose dimension is 

equal to the degree of the power links        connected to the 

ith
MICROGRID, which designates the energy exchanged; 

The ESS charge at the ith
MICROGRID is limited by the 

following constraint:  

min, max,X (t)i i iX X 
     

                                               (12)
 

where Xmin,i and Xmax,i are, respectively, the lower and the 
upper bounds of the state variable at the ith MICROGRID, 
completely known constant and strongly dependent on the 
storage technology. 

2.5 Optimal Control Theory on Microgrids :  

Optimal control theory provides a modern, direct, and 
systematic approach to a large variety of control design 
problems including constrained optimization with 
interconnected variables. In this work, the optimal control 
problem is formulated using the gradient descent method 
and differential evolution. In gradient descent method we  
solved in terms of dual variables (Hamiltonian co state and 
multipliers of constraints) using the Euler–Lagrange 
approach. Its main innovation is the use and the exchange of 
information and forecast of power production and 
consumption on the whole set of MGs, to improve the overall 
quality of the power management, and energy storage. In 
addition, the PMP decreases the computational loads as the 
number of nonlinear second order differential equations 
increases in a linear manner with the dimension of the state 
variables. 
 
C. State Variables Constraints 
 
While, in the case of state constraints, the mathematical 
formalization of the optimal control problem must consider 
the constraints before developing necessary conditions for 
the optimality. The state constraint that appears in can be 
converted into two equality constraints. The reason for such 
a transformation is to consider the variation of the state in 
the Hamiltonian. The inequality constraint related to the 
state that is expressed can be written as follows: 

2 min(t) (t) Sg S       

                                   (13) 

1 max(t) S (t)g S       

                                               (14) 
           

d. Objective Function  
 
The problem statement is an optimal control of energy in a 
network of microgrids. This can be explained as a transfer of 
energy of the state of the system from any initial state that is 
different from 0 to a certain value of time that is known. The 
problem also considers the minimization of energy transfer 
and storage costs. The aim is to find the optimal control 

*(t)u  and the state 
* (t)iX  [where (*) designates the 

optimal value] that minimize the performance measure (cost 
function), assuming that there is a perfect knowledge of the 
state of each ESS, and under a cooperative strategy among 
the MGs. The cooperative strategy aims to maintain an 
optimal level of energy in the distributed ESS, as well as to 
achieve a low power flow among the MGs. In the following, a 

vector/matrix notation for the state ( X(t) R I ) and 

control U(t) RW variables are assumed, with the same 

meaning of the scalar notation as defined before. The 
objective function is expressed as follows: 
 

 
00

, ,  [ ( (t) ' (t)) (t) ' N u(t) ]dt

f

t f

t
n

i

F x u t S M S u


 
           (15) 

                                                           
M, M > 0, is a I × I matrix, related to the cost of an 
exceeding/lacking quantity of energy stored in each energy 
storage device; 
 
N is a W ×W matrix, N > 0, related to the cost of the power 
sent on each edge of the network. 
 
The Microgrid system optimal control equations are as 
follows:  

.

(t) *X(t) B* U(t)X A   

As discussed X is ESS 

Here since I = 4, 

1

2

3

4

(t)

(t)
X(t)

(t)

(t)

x

x

x

x

       

                        (16) 

A is efficiency matrix of each microgrid. Let us consider each 
microgrid has 100%efficiency , so A would turn out to be an 
identity matrix of order 4.  
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                (17) 

The state equations of the microgrid system is as follows :  

.

1 1(t) (t) (t)x x u       

                                   (18) 

.

2 2(t) (t) 2 (t)x x u       

                    (19) 

.

3 3(t) (t) (t)x x u       

                                  (20) 

.

4 4(t) (t) 2 (t)x x u       

                                             (21) 

The cost function of the network of microgrids is  

2 2 2 2 2

1 2 3 4

0

(x,u, t) ( (t) (t) (t) (t) 4 (t) )

t

f x x x x u dt    
         (22)

 

RESULTS 

Steepest Descent Method  

The optimum cost function is obtained and the value is 
0.8196p.u.   

 

 

Figure 5 : Cost Function of SD 

The above plot shows the cost function versus number of 
iterations.   

 

 

Figure 6 : State functions of SD  method.  

 

The above plot shows the variation of state variables during 
time of execution.  

Differential Evolution :   

The optimum cost function is obtained and the value is 
0.7923p.u 

 

Figure 7 Cost function using DE 

 

Figure 8 State functions using DE 

Conclusion 

Comparing the final cost functions after executing 
differential evolution and steepest descent method, we 
observe that differential evolution obtains a better optimum 
result. The problem is solved using the continuous 
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mathematical formalization of the optimal control based on 
both deterministic and stochastic methods. The wish is to 
open a new modeling approach also for recent evolutions of 
traditional approaches. An interesting development of the 
proposed approach should be devoted to the application of 
the control approach using a real case study and real data. 
This approach can be further extended to renewable energy 
turbines like wind and solar turbines. 
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