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Abstract— This paper presents the results of an 
extensive study of several transmission and 
distribution power systems to explore applicability of 
the Constant Complex Jacobian Power Flow Model [1]. 
This method exhibits stable convergence and the paper 
also demonstrates that this method stands as an 
alternative to the Fast Decoupled Power Flow (FDLF) 
model [2,3]. In Constant Complex Jacobian Power Flow 
the Jacobian evaluated from the real form of power 
equations P-Q is expressed in the complex variable 
form exploiting the structure of the Jacobian. This 
Jacobian is triangularized at the beginning of the power 
flow solution and it is kept constant throughout the 
power flow solution. In FDLF [2] many assumptions 
are considered and two matrices [B'] and [B"] have to 
be triangulated, but in constant complex Jacobian 
power flow method only single constant matrix is to be 
triangulated. The results demonstrate that the constant 
complex Jacobian power flow model possess more 
stable convergence for both well-behaved and ill-
condition systems when compared to FDLF. The 
memory usage is slightly more compared to the Stott`s 
FDLF model and the time due to single matrix 
triangulation is on the similar magnitude as that of 
Stott`s model. From the results, this paper suggests that 
Constant Complex Jacobian Power Flow Model is an 
alternative to the FDLF [2]. However this model has 
strong convergence characteristics for distribution 
networks when compared to Stott`s model [2].  
 

Index terms-Alternative to FDLF, Complex, 
Distribution networks, General Power Flow and ill 
condition networks. 

 

1 INTRODUCTION: 

 
Power flow calculations are performed in system 
planning, operation planning and control of power 
system. The choice of a solution method for 

practical application requires a careful analysis of 
the comparative merits and demerits of the many 
available methods [4] in such respects as storage, 
speed and convergence characteristics. 
Requirements of the specific application and 
computing facilities are also play the major role in 
the choice of the method. The difficulties arise 
from the fact that no one method possesses all the 
desirable features suitable for all cases of 
networks and situations. 
 

In order to develop a simple and efficient power 
flow model, many decoupled polar versions of 
Newton Raphson method have been attempted for 
reducing memory requirement and computation 
time involved for power flow solution. Among 
several decoupled versions, the Fast Decoupled 
Load Flow model (FDLF) developed by Stott and 
Alsac [2] possibly is the most popular one 
frequently used. This method utilizes few 
justifiable assumption, apart from usual P-θ and Q-
V decoupling, such as cosθ≈1, Gij sinθ « Bij and 
Qi<<Bii V2i to obtain the Jacobian like matrices [B'] 
and [B"] and are held constant during the solution 
process. 

 
Certain additional assumptions also have been 

employed to improve the convergence property of 
the FDLF model [2]. 

 
These assumptions are: 
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While forming [B'], parameters such as shunt 
reactances and off-nominal in-phase transformer 
taps are omitted. 
Line series resistances are neglected while 
forming [B"]. 

The above additional assumptions have 
significant effect on the convergence property of 
the FDLF model [2]. But this method faces the 
problem for ill conditioned networks. 

 
        Later V.Bapi Raju et al [3] in which an 

efficient compensation technique (which is 
discussed later in this paper also) is used for Q-
limit enforcement problem at PV buses so as to 
develop a General Purpose Fast Decoupled Power 
Flow Method (GFDPF)[3]. In GFDPF model, all the 
network shunts are considered as the impedance 
loads and are reflected in the bus power mismatch 
vector. A GFDPF model has the convergence 
property close to that of usual Stott’s FDLF model 
for well-behaved systems but shows much better 
convergence property for ill-conditioned 
situations. 

 
         In GFDPF [3] and FDLF [2] models many 

assumptions are taken and two matrices i.e., [B'] 
and [B"] have to be triangulated. These 
assumptions have degrading effect on the 
convergence behavior. 

 
         An exploratory effort is made to develop an 

alternative power flow model, retaining the 
significant properties of the original Stott`s model 
from the memory requirement and triangulation 
time of the involved matrices with out resorting to 

(P-)-(Q-V) decoupling. The Jacobian in real form 
is formed with all the buses assumed to be PQ 
type. The resulting structure is exploited to 
represent it in the complex form paving the way 
for memory saving and less triangulation time. 
The details of formation of this model are 
presented in the next section. In Constant Complex 
Jacobian Power Flow Method the Jacobian is 
expressed in complex variable form and this 
Jacobian is triangulated once at the beginning and 

it is kept constant through out the power flow 
solution process. In constant complex Jacobian 
model only one or two assumptions are 
considered and only single matrix is to be 
triangulated. In Constant Complex Jacobian model 
also, in order to handle the Q-limit enforcement 
problem compensation technique (which is used 
in GFDPF model [3]) is used. Generally constant 
matrix methods exhibit reduced efficiency when 
dealing with Q-limit enforcements associated with 
the problems of bus type switching. M.Chan and 
Vladimir Brandwajn [5] have proposed the use of 
shunts at PV buses as long as reactive power limits 
are not violated. In the presence of violations, the 
matrix is refactorized using partial refactorization 
technique. Implementation of this technique 
requires higher programming skills without which 
the scheme might not achieved its full potential. 
The Constant Complex Jacobian model is a simple 
and an efficient technique which can handle the 
bus type switching due to Q-limit enforcement 
with out any implementation of partial 
refactorization techniques. In present paper Q-
limit enforcement is not discussed deeply and it on 
further investigation. The Constant Complex 
Jacobian model exhibits best convergence for both 
well-behaved and ill-condition systems and this 
model also provides stable convergence and it 
exhibits fast convergence. 

 
      This paper presents the results of several 

transmission and distribution power systems for 
both well-behaved and ill condition by using FDLF 
and Constant Complex Jacobian model and 
compares these two methods. Investigations 
clearly reveal that Constant Complex Jacobian 
model stands as an alternative to the FDLF model. 

 
    Multiplying all the branch resistances or some 

branch resistances by a positive factor  simulates 

the ill condition, and varying the value of  varies 

the degree of ill condition. =1.0 is corresponding 
to the base case values.  
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    For the quick reference the Constant Complex 
Jacobian model is explained briefly in this paper. 
  

2.PROBLEM FORMULATION 

 
In the power system network, the net injected 

active and reactive powers at an ith bus are given 
by 

1

[ cos sin ]
nb

i i j ij ij ij ij

j

P V V G B 


  ----------(1) 

And 

1

[ sin cos ]
nb

i i j ij ij ij ij

j

Q V V G B 


     ----------(2) 

Where Vi and Vj are the voltage magnitudes at ith 
and jth  buses respectively. 

                      
ij i j     

i and 
j are the bus angles of  ith and jth  buses 

respectively. 

ij ijG jB  represents the ijth element of Y-bus. 

NB is the total number of buses. 
 
The linearized power flow equations of (1) and 

(2) are expressed in compact form as 

                
1 3

2 4

P J J

Q J J V

      
     

      
      -----------(3) 

Where      , ,i scheduled i calculated iP P P     ----------(4) 

and         , ,i scheduled i calculated iQ Q Q    ----------(5) 

  and  V  are the corrections vectors for 

busbar angles and busbar voltages. 
        In equation (3) the sub-matrices J1 and J4 

have dissimilar dimensions due to absence of Q-V 
equations of PV buses. 

 

Fast-Decoupled Load Flow: 

 
Stott shaped the equation (3) by utilizes some 

justifiable network assumptions as 

                   'P
B

V


 
    

 
           ----------(6) 

And           ''Q
B V

V

 
    

 
.       ----------(7) 

 

 General Purpose Power Flow Model: 

 
         In this method some additional assumption 

to Stott model are employed in order to reduce the 

parameters involved in the formation  B ,  B  

and to handle the bus type switching. 
 
The assumptions are 

All network shunt reactances such as line 
charging reactances, external reactances located 
at buses and shunts formed due to π 
representation of off-nominal in-phase 
transformers are lumped at each bus are treated 
as constant impedance loads. 
 
All the buses are assumed to be PQ type while 

forming the Jacobian like  B  and  B  with a 

flat voltage start at 1.0 p.u. The treatment of PV 
buses will be considered later. 

 
By incorporating the above assumptions the 

resulted FDLF equations are 
 

                      'P
B

V


 
    

 
    -----------(8) 

and              ''Q
B V

V

 
    

 
  -----------(9) 

Where, 

 , , ,i scheduled i calculated i shunts iP P P P    ------(10) 

, , ,i scheduled i calculated i shunts iQ Q Q Q    ----(11) 

, ,shunts i shunts iP andQ  are the real and reactive 

powers due to lumped shunts at the thi bus. 

 

      The dimension of the Jacobian  B  is (NB-1) 

X (NB-1) and  B  is (NB-NPV-1) X (NB-NPV-1) in 

equations (6) and (7) (where NPV is the number of 
voltage controlled buses), but in equations (8) and 
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(9) the dimension of  B  and  B  are same of 

(NB-1) X (NB-1). 
 
       A large value ‘W’=(1.0/Xsh) (Xsh is chosen 

as 0.0001) is added to diagonals representing Q-V 

equations of PV buses in the  B  matrix of 

equation (9) in order to mask out the effect of the 
presence of Q-V equations of PV buses. This has 
the effect of maintaining the V  0 for the 

incremental power flow model such that the 
specified bus voltage magnitudes are maintained 
constant at PV buses. 

      The 
Q

V

 
 
 

 terms related to voltage-

controlled buses, which are in PV status, are 
always set zero. 

 

Constant Complex Jacobian Power Flow Model: 

 
      The assumptions made in the Constant 

Complex Jacobian Power Flow Model are also 
same as in GFDPF. 

 
The assumptions are 

All network shunt reactances such as line charging 
reactances, external reactances located at buses 
and shunts formed due to π representation of off-
nominal in-phase transformers are lumped at each 
bus are treated as constant impedance loads. 
 
All bus voltages are assumed to be of 1.0 0  at 
the beginning of the iterative process. 
 

In the beginning all bus are assumed to be of PQ 
type. The treatment of PV buses will be considered 
later. 

 
With these assumptions, equation (3) takes the 

form as 
 

       
P BG

Q G B V

       
           

                 ----------(12) 

 

Where, `` QandP   are same as in equations 

(10) and (11). 
 
The equation (12) can be written in complex 

form as 

    
    

   ,

P j Q J V j

where J G jB

       

 
    ----------(13) 

 
 The Jacobian is Y-Bus devoid of shunts 

(excluding the slack bus row and column). 
 
The order of the Jacobian is (NB-1) X  (NB-1). 
 
The Q terms related to voltage-controlled 

buses, which are in PV status, are always set zero. 
 
Incremental Secondary Injections (ISIs): 
 
       The ISIs are provided at these PV buses 

which are not in PV status to drive the voltage 
deviations to zero. In order to estimate the correct 
quantities of these injections, it is assumed that 
these PV buses are shorted to reference bus in the 
incremental power flow model as far as 

Q V  equations are concerned. Proceeding on 

the lines similar to fault studies, the final voltage 

deviations f

pvV    should be zero due to 

connection to the reference bus. 
 
Using Thevenin`s equivalent circuit approach, 

     f

PV ThV V X I           --------(14) 

Where, 

 0f

pvV     are the final voltage deviations, 

 ThX  is Thevenin reactance matrix seen from 

PV buses, which are in PV status and reference 

bus, and the elements are picked up from 
1

J


. 

 I  is a vector of incremental secondary 

injections to be provided at these buses to drive 
the voltage deviations to zero at PV buses 

and  V   are the voltage deviations at these 
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buses prior to connecting them to the reference 
bus. 

                  
1

Th PVI X V


         ---------(15) 

 
    The changes in incremental voltages and 

angles due to these ISIs can be obtained from 
equation (13) after making the following changes 
as in equation (16).           

   
1 0.0 0.0

0.0

j
V j J

j I


  
     

  
   ---------(16) 

      The changes in incremental voltages and 
angles due to these ISIs can be obtained using 
superposition principle as 

   F FV j V j V j                 

                                                                  ----------(17) 

Where FV , F  are the final voltage and angle 

corrections. 
     V  ,    are the initial estimates as obtained 

from equation (13) prior to ISIs. 
      The above procedure is adopted during 

every iteration and at the end of each iteration; the 
voltages and angle are updated as 

   
1t t F FV j V j V j  


              

                                                                   -----------(18) 
t - is the iteration count. 
      
 
 The above procedure is repeated for every 

iteration in order to provide incremental 
secondary in injections at PV buses. 

The problem of Q-limit enforcement is on 
further investigation. 

3. SYSTEM STUDIES 

 
        Studies are performed on IEEE-14, 30 bus 

systems, Gungor-25 bus test system and also 33, 
15 bus distribution systems. A tolerance of 
0.01MW/MVA on a 100MVA base (0.0001p.u.) is 
chosen. Maximum numbers of iterations are fixed 
at 25.0. So, in the result tables, 26.0 indicate 
solution is slow convergence, and for divergence 
DIV is used. Several systems are studied for 

unadjusted case.  
 
 The results are presented in table-1 and table-3 

obtained for Stott`s FDLF model and two another 
models for transmission systems and distribution 
systems respectively.  

 
 
 
 These models are coded as  

(000)-(111), representing line series resistances, 
line shunts and external shunts are neglected in 

forming  B  coded as (000) and all are considered 

in forming  B coded as (111). 

 
(100)-(000), representing line series resistances is 
considered, line shunts and external shunts are 

neglected in forming  B  coded as (100) and all 

are neglected in forming  B coded as (000). 

 
(100)-(011), representing line series resistance is 
considered, line shunts and external shunts are 

neglected in forming  B  coded as (100) and the 

series resistance is neglected and all shunts are 

considered in forming  B coded as (011). 

 
        d) (000)-(100), representing line series 
resistance, line shunts and external shunts are 

neglected in forming  B  coded as (000) and 

representing line series resistances is considered, 
line shunts and external shunts are neglected in 

forming  B  coded as (100). 

 
The results represented in table2 and tanle4 are 

obtained for Constant Complex Jacobian Model for 
several transmission systems and distribution 
systems respectively. 

4.NUMERICAL RESULTS AND DISCUSSIONS 

 
Computer codes had been developed for both 

FDLF and Constant complex Jacobian Models by 
exploiting sparsity. It is interesting to note that in 
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table 2, the iterations taken for the power flow 
solution to converge remain unaltered for both 
well-behaved and ill condition case up to some 
degree of ill condition. In referring to table 1 for 
case (100-011) exhibits more or less stable 
convergence. When results presented in table1 are 
compared with table2, the results in table2 shows 
better stable convergence. 

 
From the results of distribution systems, the 

results in table 4 revels that constant complex 
Jacobian works well, takes less iterations to 
converge the power flow solution and also this 
method exhibits more or less stable convergence 
for both well behaved and ill conditioned 
distribution systems.  

  
 The results in table-2, 3 clearly demonstrate 

that the Constant complex jacobian exhibits stable 
convergence and it takes less iteration for 
distribution systems to converge. 

  
TABLE-1: FDLF RESULTS FOR SEVERAL SETS OF BB   

FOR BOTH  
WELL-BEHAVED AND ILL CONDITIONED CASES 

 
B’-B” Degree of ill condition 

1.0 1.5 2.0 2.5 3.0 3.5 
(000)-
(111) 

4 5.5 8.5 11.5 16.5 23.5 

(100)-
(000) 

4.5 5.5 5.5 6.5 6.5 6.5 

(100)-
(011) 

4.5 5.5 5.5 5.5 6.5 6.5 

 
TABLE 1.1 IEEE-14 BUS SYSTEM 

 
B’-B” Degree of ill condition 

1.0 1.5 2.0 2.5 3.0 3.5 
(000)-
(111) 

6.5 8.5 11.5 15.5 22.5 26 

(100)-
(000) 

5.5 6 7.5 8.5 9.5 12.5 

(100)-
(011) 

5.5 6 7.5 8.5 9 12.5 

 

TABLE 1.2 GUNGOR 25 BUS SYSTEM 
 

B’-B” Degree of ill condition 
1.0 1.5 2.0 2.5 3.0 3.5 

(000)-(111) 3.5 6.5 8.5 12.5 18.5 26 
(100)-(000) 4.5 5 5 6 7 8.5 
(100)-(011) 4.5 5 5 6 7 8.5 

 
 

TABLE 1.3 IEEE-30 BUS SYSTEM 
 
TABLE2: CONSTANT COMPLEX RESULTS FOR BOTH WELL-

BEHAVED AND 
ILL-CONDITIONED CASES (WITH OUT Q-LIMIT 

ENFORCEMENTS). 
 

DIFFERENT 
SYSTEMS 

Degree of ill-condition 
1.0 1.5 2.0 2.5 3.0 3.5 

IEEE 14 bus 
system 

 
4 4 4 4 6 7 

Gungor 25 bus 
system 

 
6 6  6 7 10 14 

IEEE 30 bus 
system 

 
4 4 4 6 7 10 

 
 

TABLE3: FDLF RESULTS FOR DISTRIBUTION SYSTEMS 

AND FOR BOTH  WELL-BEHAVED AND ILL-CONDITIONED 

CASES 
 

Distribution 
Systems 

B’-B” 
Degree of ill condition 

1.0 1.5 2.0 2.5 3.0 3.5 

15 bus 
system 

(100)-
(000) 

5.5 6.5 7 9 10 12 

(000)-
(100) 

5 7 8.5 10 12.5 15.5 

33 bus 
system 

(100)-
(000) 

7.5 9 12 16 26 26 

(000)-
(100) 

8.5 12.5 17.5 25 26 26 
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TABLE4: CONSTANT COMPLEX JACOBIAN RESULTS FOR 

DISTRIBUTION SYSTEMS AND FOR BOTH WELL-BEHAVED 

AND ILL-CONDITIONED CASES 
 

Distribution 
Systems 

Degree of ill-condition 
1.0 1.5 2.0 2.5 3.0 3.5 

15 bus 
system 

3 4 4 5 5 6 

33 bus 
system 

6 7 8 10 12 15 

5.CONCLUSIONS 

 FDLF Stott model [2] faces severe problem 
with ill-conditioned networks, this ill 
condition problem is overcome by the 
GFDPF [3]. But, FDLF and GFDPF so many 
network assumptions are considered. 

 A simple and efficient model Constant 
Complex Jacobian model is developed 
without any assumptions.   

 The Constant complex Jacobian model 
exhibits more stable convergence for both 
well-behaved and ill condition systems. 

 The Constant complex Jacobian model 
works well for distribution systems and 
takes less iteration to converge and 
exhibits stable convergence for both well-
behaved and ill condition. 

         The above reasons reveal that the 
Constant Complex Jacobian is a simple and 
efficient power flow model that can apply for 
both transmission and distribution systems 
and it is an alternative to the FDLF.  
 

        6.REFERENCES 

 
       V.Bapi Raju, P.R.Bijwe, and J.Nanda, 

“Compensation Technique for Q-Limit 
Enforcements In A Constant Complex Jacobian 
Power Flow Model” , Electric Machines and 
Power Systems, 18:71-81,1990 

       
      B. Stott and O. Alasc, “Fast Decoupled Flow”, 

IEEE Trans., PAS, Vol.93, May/June, 1974, 
pp.859-869.“A General Purpose Fast 

Decoupled Power Flow” by J.Nanda, P.R.Bijwe, 
V.Bapi Raju. 

  
      B.Stott, “Review of load flow calculation 

methods”, Proc. IEEE, July 1974, Vol.62, pp. 
915-929. 

       
      S.M. Change., and V.Brendwajn, “Partial Matrix 

Refactorization”, IEEE Trans.1986, PWRS-1, 
pp. 193-200.    

  
 
 
 
 
 
 
 


