
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 07 | July-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1735

Analysis of Various I/O Methods for Large Datasets in C++

Kushaagra Moghe1 and Hemang Sarkar2

1,2Mathematics and Computing Engineering, Delhi Technological University, New Delhi, 110042, India

---***---

Abstract - As the size of a dataset increases, the selection of
suitable input and output methods for reading and writing the
data becomes more and more important. This is mainly on
account of the variations in the speeds at which different I/O
methods function in C++. The Operating System and the
processor of the machine substantially affect these speeds too.
In this paper, the variations due to the OS (Windows or Linux)
and the size and type (numbers or characters) of the dataset
are analysed. The analysis is done on very large random text
files generated by using a PRNG (pseudo random number
generator). When dealing with huge datasets, time becomes
an important constraint and so using the results of this
analysis, a suitable input/output method can be selected
depending on the type of the file (numeric or character), the
operating system of the machine and the size of the data set.

Key Words: ASCII, CLOCKS_PER_SEC, freopen, PRNG, stdin,
stdout

1. INTRODUCTION

C++ is a cross-platform object oriented programming
language and has ubiquitous uses in a lot of facets of the
modern tech world. Reading from a file and writing to a file
are one of the most used features in any programming
language, thus minimising the time taken in these two is of
immense importance.

2. I/O IN C++

Due to its backward compatibility with C, we can use the
various cstdio functions for reading and writing in C++ too.
In the experiments performed, we compare the speeds of the
functions in cstdio and the iostream objects in C++. We also
incorporate custom Fast I/O functions in the analysis.

2.1 Input methods

The standard input stream is the default pre-connected
communication channel for data. This input stream is known
as stdin and by default is directed from the keyboard. In our
experiments, we redirect stdin using the freopen function to
access the data files within the system.

In this paper, we compare the speeds of the various input
methods for reading numbers and characters from a file.

2.2 Output methods

The standard output stream is the default communication
channel for rendering output from the computer program.
This output stream also known as stdout directs the data to
the text console. We use freopen to redirect this data stream
to write directly to data files.

In this paper, we compare the speeds of the various output
methods for writing numbers and characters to a file.

2.3 Fast Input/Output methods

1. Fast cin and cout- By default iostream objects and
cstdio streams are synchronized and this makes cin
and cout comparatively slower than scanf and
printf. To resolve this we toggle this
synchronization off using:

This considerably improves the speed performance
of cin and cout.

2. Custom fast input/output functions- By using
getchar and putchar, we can make custom I/O
functions which have extremely good speed
performances. This function for reading numbers is:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 07 | July-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1736

The corresponding function for printing numbers is:

We have an option of using getchar_unlocked which is faster
than scanf and getchar but is deprecated in Windows. It is a
thread unsafe version of getchar and there is no input stream
lock check in this.

3. EXPERIMENT

We perform the experiment on two different machines with
the following specifications:

1. Intel i5-3230M CPU @ 2.60 GHz with 8.00 GB RAM
and x64 based processor running Windows 10
Professional edition.

2. Intel i5-4210U CPU @ 1.70 GHz X4 with 4.00 GB
RAM and x64 based processor running Ubuntu
16.04 LTS.

3. Compiler used- GNU GCC following the C++11 ISO
C++ standard on Code Blocks IDE version 16.01.

3.1 Random Datasets

We use rand() function defined in the header <cstdlib>
which is a PRNG (pseudo random number generator). We
write the text generated to .txt files. The rand() function
needs to be seeded in order to produce better results. This is
done as:

The time() function is defined in the header <ctime> which
returns the current calendar time and this current time is
used as a seed to the rand() function.
For writing to text files, we use the freopen() function as:

For reading from text files, we use the freopen() function as:

The freopen function with mode “w” (for writing) redirects
whatever we print to the file specified as the first argument
instead of the text console.

Similarly, if we specify the second argument as “r” (for
reading), stdin is redirected to take data from the file
specified as the first argument instead of the keyboard.

For the numeric text files, we generate random numbers
between 0 and 1018 digit by digit and store them in an
appropriate sized array. For the character text files we
generate random characters whose ASCII values lie between
32 and 122.

3.2 Time measurement

To accurately measure the time taken to only read or write
(and not include the time taken to open the file and other
parts of the code), we use:

clock_t is a clock type which represents clock ticks of the
processor. The clock() function returns the approximate
processor time used by the process. We make two calls to
this function- once before we start printing and once after
the printing is done. The difference between these values
instances gives us the approximate processor time
consumed for printing to the file.

CLOCKS_PER_SEC is a constant macro which gives us the
number of processor clock ticks per second. We need to
divide the processor time consumed by CLOCKS_PER_SEC to
get the time taken to execute the for loop (in seconds). The
resultant double value thus printed gives us the approximate
time duration of the printing process in seconds.

In a similar way, we can find the time taken to read values
from a .txt file.

3.3 Results

To get substantially accurate results, we measure the time
taken in five different instances and then calculate their

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 07 | July-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1737

average. We perform this for each input and output method
in both Windows 10 and Ubuntu 16.04.

We tabulate and graphically present the results below:

3.3.1 Reading Numbers

Table -1: Comparison of reading speeds of numbers in
Windows

Input size Time (in seconds)

 cin Fast I/O scanf Fast cin

50,000 0.26180 0.01520 0.01820 0.04640
1,00,000 0.31740 0.08380 0.03080 0.09660
5,00,000 1.46340 0.06840 0.16340 0.48400

1,000,000 2.83500 0.12460 0.35280 0.99340
2,500,000 8.05340 0.30620 0.69700 2.24140
5,000,000 13.48620 0.58080 1.38120 4.44400

10,000,000 26.83980 1.14980 2.65400 8.44820

Chart -1: Comparison of reading speeds of numbers in
Windows

Table -2: Comparison of reading speeds of numbers in
Ubuntu

Input size Average Time (in seconds)

 cin Fast I/O scanf Fast cin

50,000 0.03178 0.00860 0.01298 0.00868
1,00,000 0.05862 0.01516 0.02344 0.01986
5,00,000 0.24178 0.07120 0.10752 0.07958

1,000,000 0.46200 0.13656 0.19674 0.14560
2,500,000 1.09602 0.31594 0.44304 0.32644
5,000,000 2.16820 0.59710 0.85402 0.62276

10,000,000 4.31768 1.18746 1.70668 1.22172

Chart -2: Comparison of reading speeds of numbers in
Ubuntu

3.3.2 Printing Numbers

Table -3: Comparison of printing speeds of numbers in
Windows

Input size Time (in seconds)

 cout printf Fast I/O Fast cout

50,000 0.0402 0.0158 0.0220 0.0534

1,00,000 0.0812 0.0406 0.0406 0.1092

5,00,000 0.3962 0.1782 0.1826 0.4878

1,000,000 0.7940 0.3728 0.3640 0.9254

2,500,000 1.8974 0.8912 0.9066 2.6892

5,000,000 3.8000 1.7842 1.8094 5.0388

10,000,000 7.5390 3.5684 3.5592 9.8254

Chart -3: Comparison of printing speeds of numbers in
Windows

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 07 | July-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1738

Table -4: Comparison of printing speeds of numbers in
Ubuntu

Input size Time (in seconds)

 cout printf Fast I/O Fast cout

50,000 0.00878 0.00838 0.01114 0.01014

1,00,000 0.01658 0.01484 0.02332 0.01710

5,00,000 0.06052 0.05684 0.09102 0.05960

1,000,000 0.11642 0.11220 0.17912 0.11554

2,500,000 0.28018 0.27194 0.43306 0.28312

5,000,000 0.56304 0.53592 0.87418 0.55424

10,000,000 1.13344 1.08044 1.72802 1.13020

Chart -4: Comparison of printing speeds of numbers in
Ubuntu

3.3.3 Reading Characters

Table -5: Comparison of reading speeds of characters in
Windows with input size in millions

Input
size

Time (in seconds)

 cin Fast cin scanf cin.get getchar

1 0.553 0.363 0.213 0.447 0.010

5 2.698 1.703 0.842 2.245 0.037

10 5.440 3.317 1.570 4.572 0.088

25 13.966 8.223 3.188 11.399 0.232

50 31.330 15.386 6.322 25.218 0.457

75 45.039 22.096 9.515 33.317 0.631

100 62.577 29.921 12.654 47.396 0.940

Chart -5: Comparison of reading speeds of characters in
Windows

Table -6: Comparison of reading speeds of characters in
Ubuntu with input size in millions

Input size Time (in seconds)

 cin scanf getchar cin.get Fast cin

1 0.117 0.053 0.014 0.049 0.019

5 0.503 0.207 0.055 0.199 0.085

10 0.977 0.391 0.107 0.382 0.168

25 2.503 0.913 0.235 0.979 0.413

50 4.666 1.824 0.453 1.858 0.812

75 7.144 3.708 0.650 2.838 1.194
100 9.672 5.778 0.868 3.631 1.637

Chart -6: Comparison of reading speeds of characters in
Ubuntu

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 07 | July-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1739

3.3.4 Printing Characters

Table -7: Comparison of printing speeds of characters in
Windows with output size in millions

Input size Time (in seconds)

 cout fast cout printf putchar

1 0.294 0.209 0.081 0.034

5 1.355 1.250 0.437 0.184

10 2.911 2.481 0.898 0.384

25 8.082 6.030 2.097 0.915

50 17.179 11.312 4.178 1.810

75 24.263 16.032 6.211 2.824

100 34.057 20.139 8.199 3.584

Chart -7: Comparison of printing speeds of characters in
Windows

Table -8: Comparison of printing speeds of characters in
Ubuntu with output size in millions

Input size Time (in seconds)

 printf putchar cout fast cout

1 0.0378 0.0123 0.0378 0.0335

5 0.0508 0.0502 0.1601 0.1336

10 0.0995 0.0967 0.3234 0.2621

25 0.2445 0.2391 0.7992 0.6460

50 0.4890 0.4936 1.5468 1.3183

75 0.7228 0.7111 2.3009 1.9275

100 0.9642 0.9400 3.0448 2.5274

Chart -8: Comparison of printing speeds of characters in
Ubuntu

4. INFERENCE ANALYSIS

From the results we observe that scanf and printf are faster
than cin and cout respectively. This is mainly because the
iostream I/O functions maintain synchronization with the C
I/O functions. This synchronization can be toggled off and
that has been done in the case of Fast cin and Fast cout which
considerably improves the performance.

We also infer that getchar and putchar are faster than scanf
and printf respectively. Due to this, the custom Fast I/O
functions which are implemented using getchar and putchar
become very fast themselves.

The relationship between the size of data and the time taken
to read/write it does not exactly follow a linear relationship.
Counterintuitively, the relationship seems to be of
exponential type as the size of the data set increases.

In general, we observe that Ubuntu has a better I/O speed in
C++ than Windows. cin and cout in Ubuntu outperform cin
and cout in Windows by a huge margin. Since Ubuntu is more
lightweight than Windows, this gives it an edge in terms of
speed. Windows tends to have additional codes to support
legacy software so that it retains backward compatibility with
older versions of itself.

The running time of a program depends on how much of the
processor is being currently occupied by other processes.
This plays a major role in deciding the speed at which
programs execute.

5. CONCLUSIONS

Based on the experiments performed, we have basis to
decide upon proper I/O methods as per need. When dealing
with characters only, getchar() and putchar() will always
give best speeds. In case of numbers, custom Fast I/O
functions implemented using getchar() and putchar() give
the best results and should be preferred over other I/O
methods.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 07 | July-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1740

REFERENCES

[1] Bjarne Stroustrup, The C++ Programming Language, 3rd

edition, Addison-Wesley Pearson Education, 2002.

[2] Brian Kernighan, Dennis Ritchie, The C Programming
Language, 2nd edition, Pearson Education, 2015.

[3] Standard C++ Library reference:
http://www.cplusplus.com/reference/ Cpp Reference
Documentation.

[4] C++ reference: http://en.cppreference.com/w/ Cpp
Reference Documentation.

http://www.cplusplus.com/reference/
http://en.cppreference.com/w/

