’// International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

JET Volume: 03 Issue: 07 | July-2016

www.irjet.net

p-ISSN: 2395-0072

FORMAL PROPERTY VERIFICATION OF COUNTER FSM AND 12C

SNEHA S1, ROOPA G2

1 PG Student, Dept. of Electronics and Communication Engineering, Nagarjuna College of Engineering, Bengaluru
Karnataka
Email: sneha44enz@gmail.com
2 Assistant professor, Dept. of Electronics and Communication Engineering, Nagarjuna College of Engineering,
Bengaluru, Karnataka
Email: roopa.gurijepalli@gmail.com

Abstract - In the present days, due to the increased
complexity of multimillion gates such as complex SOC, ASICs
and DSP processors need to be verified effectively. About 70%
of the VLSI design efforts to consumer verification. Some of the
front end technologies are RTL functional verification, test
bench verification coverage techniques, etc. are very difficult
to design closure. These may not cover all the corner cases.

By considering the above concerns, formal
verification has become more important to verify the complex
circuits and protocols. Model checking verifies temporal logic
in formal verification. One can check the perfections of circuits
or designs using HDL’s. Verification Interacting with Synthesis
(VIS) is a tool The tool is to implement model checking
properties on up-counter and I12C protocols.

Key Words: Counter FSM, 12C protocol, VIS, Model
checking, CTL property verification using VIS

1. INTRODUCTION

Verification process plays very important role in the
chip designing industries, companies etc. Due to the
increased complexity of multimillion gates such as complex
SOC, ASICs and DSP processors, it needs to be verified
effectively before the chip production in fabrication labs
(FAB labs). The main goal of verification is to check and
correct the defects in circuits, errors in programs and finally
to get the defect free products. The term verification means
“Itis the process which is used to reveal that the purpose of
design is stored in its application”.

1.1 General Digital Circuit Design Flow

Fig-1 shows the sequence to design a digital circuit and
we call this as design flow. The steps are listed below with a
brief description and function of each. [2]

» Concept and market research: This gives the
complete information about the design structure
and it embodies the system requirements.

» Architectural specs: This mainly concentrates about

the elements and components of the system.

© 2016, IRJET | ImpactFactor value: 4.45

» Floor planning: It identifies the placements of
structures in a system and it allocates the space for
each structure to meet some effective goals in a
system.

Ilarket research
Apehitectural
design
s
RTL coding &
simulation
Floor planning
synthesis &
optimization
Formal
vetification
Pre—ia;rout
Tining
(9

YES
& routing
Paost-layout
DT
HO ‘/Tm
0K
YEZ
Testing &
manufacturing
Fig-1: Digital circuit design flow

» Physical design: Here components are in the form of
circuits (interconnections and systems) and those
are changed to geometric representation of each
circuit of design.

» Optimization: In this step removal of Wire Load
Models (WLM) are taking care.

» Scan insertion: This step helps in verifying the
circuit by designing the testing part or by
simulation.

» Formal verification (RTL v/s Gates): The design of

simple chip and also complex chip is verified by
writing program in the form of properties.

IS0 9001:2008 Certified Journal

| Page 1326

Y

JET Volume: 03 Issue: 07 | July-2016

International Research Journal of Engineering and Technology (IR]JET)

www.irjet.net

e-ISSN: 2395 -0056
p-ISSN: 2395-0072

» Pre layout STA: In this step it performs front end
net-list for STA and also routing delay is calculated.

» Routing: In physical design process, there are two
types of routing. Local routing assigns wiring to
particular layer of the metal. Global routing which
allocates wiring globally.

» Post layout STA: During this step, it provides back
end net-list for STA. Comparative

» Testing and Manufacturing: This is the final step in
block design flow of digital circuit.

There are two techniques in formal verification. Those
are equivalence checking and model checking. Compare to
the equivalence checking, model checking is more effective
in real time projects verification. By accepting the temporal
logic, writing the CTL properties on selected protocol using
model checking concept also by using VIS tool version 2.4
and performing the complete verification of selected digital
circuits like counter-FSM and I2C protocol is the main aim in
this project, it will cover all the corner cases.

2. OVER VIEW OF VERIFICATION

These days, in the era of ASICs and System on Chip (SOC)
models, verification plays very important role. Hence some of
the core companies and industries are hiring more number of
engineers to verification domains rather than development
domains. [3]

2.1 Verification Types

There are 4 types of verification which are mentioned
below.

» Static timing verification: It is a type of verification
which uses static timing analysis (STA) and lint
checking.

» Physical design based verification: It verifies certain
criteria, performs after routing. Layout verification is
done by using physical verification. It checks for
Design Rule Check (DRC), Electrical Rule Check
(ERC), Layout Versus Schematic (LVS), antenna
check and XOR check.

» Functional verification: It verifies the design as its
intended work is done.

» Formal verification: The formal properties are
written to verify the chip design. In formal
verification, there is no need of writing testbenches.
Instead need to write some properties for the design
to verify it.

In equivalence checking, there is a comparison between
the two models have been takes place. In equivalence

checking, always it maintains the synthesis part as honest
tool. It can be easily find out the actual problem in the design.

In model checking, it formally verifies the design
properties. Some missing part of verification during
simulation is complete by the model checking properties.
Main concept is it will prove for the assertions (formula
passed or failed). And also it checks for the design behavior.

3. VERIFICATION PLAN

Before starting any type of project, planning plays very
importantrole. In verification, a design plan which is called as
blue print. It gives an idea about verification process like
what functionality is to be verified, how verification process
is to carry out, how success the verification process is, which
type of response can be expected by system etc. Main aim of
verification plan is to achieve “First time success”. [3]

Design specification plays an importantrole in verification
plans. There are two types of specifications.

» Architectural specification
» Design specification

Architectural specification fulfills the device functional
requirements and design specification gives implementation
idea of certain architecture with down of block level.
Specifications are given to both design team and verification
team together, so that both works are parallel done by
consuming very less time to reach the final stage.

3.1 Levels of Verification

After the verification specification under verification plan,
need to know different verification levels. The levels are
mentioned below.

» Unit-level verification: In this level it uses ad-hoc
type of verification where the designer should only
checks for the operations, syntax and functionality of
selected unit.

» ASIC and FPGA-level verification: ASIC is SOC which
performs verification at system level. FPGA is also an
SOC. But only with 50% of effectiveness it allows to
implement the functionally and checks the complex
system.

» System-level verification: System is a collection of
units and blocks which are individually verified.
Mainly it verifies the components, and its
interactions between components present on the
system.

» Board-level verification: It is used to verify the
correctness of the system present on the selected
board. With the help of board capture tool, board-
level models can be instinctively generated.

© 2016, IRJET | ImpactFactor value: 4.45

ISO 9001:2008 Certified Journal | Page 1327

http://en.wikipedia.org/wiki/Routing_(EDA)

’,/ International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

JET Volume: 03 Issue: 07 | July-2016

www.irjet.net

p-ISSN: 2395-0072

3.2 Verification Plan For Digital Circuits (Counter-
FSM and 12C protocol).

With the help of specification, a plan can be done for the
selected digital circuit and that is called as verification
specification. Once the specification is done verification
should be performed. Both counter and I2C should be verified
for present-state and next-state transactions. This depends
on clock, reset, given data, supply voltage and
acknowledgement. Verification is done by using the CTL
properties. [3]

4. FORMAL PROPERTY VERIFICATION TOOL

Formal verification is done by using the tool called as
Verification Interacting with Synthesis (VIS). The existence of
VIS from the University called Berkeley and Boulder. It is an
interacting communication tool between the user and system
which are designed using various FSM states. The generations
before VIS are HSIS and SMV. Fig-2 shows the outer sketch of
working of VIS. [1]

Mainly there are three divisions in VIS which are
mentioned below.

» For reading design description consider common
front end.

» Verification (VIS-v)
» Synthesis (VIS-s)

Verification in VIS is done on Verilog code and apply
model checking on that code by writing CTL properties. It
checks in the result that the properties are passed or failed.

Synthesis in VIS has interaction with SIS by simplifying
system parts for purpose of verification. Therefore the main
intension is to carry the flow of hierarchical synthesis and
later Verilog interpretation is converted to gate level. [1]

VLIMV

VIS

Verification Synthesis
-model-checking -state minimization
-equivalence checking [-state encoding

@7 -simulation -restruct, hierarchy

Fig-2: Outer sketch of working of VIS

VL2MV means the conversion of Verilog to BLIF-MV form.
VIS does not directly work on Verilog code. It requires
intermediary format which is called as BLIF-MV (Berkely
Logic Interchange Format). Conversion from Verilog code
BLIF-MV format requires a compiler which is called as

VL2MV. BLIF is to trace hierarchical circuit in logic level to
textual type.

4.1 Temporal Logic in Formal Verification

It helps in forming the excellent temporal properties by
making use of its operators. There are two types in temporal
logic. [1]

» Linear Temporal Logic (LTL)
» Computation Tree Logic (CTL)

Consider LTL which gives linear properties operates with
linear time. It is applicable to FSM. Example for FSM and LTL
is shown in the fig-3(a) and 3(b).

Fig-3(a): FSM sample

Fig-3(b): LTL sample shown for FSM given in 3(a)

Consider CTL which gives the properties that can be easily
develop and then verified. Consider an example of FSM
shown in the fig-3(a) and the CTL sample is formed in subject
tree pattern as shown in the fig-3(c).

Fig-3(c): CTL sample shown for FSM given in fig-3(a)
4.1.1 Some Properties Example in CTL

User should be aware of CTL formulas before using VIS
tool. Below mentioned are some examples of CTL formulas.
[6] & [4]

» AG (send — A (send U receive) - this means ifalways
send takes place, then receive is true and till send
should also appears true.

» AG AF restart - starting from reachable state the all
paths beginning from one state to other state, restart
is asserted.

© 2016, IRJET | ImpactFactor value: 4.45

ISO 9001:2008 Certified Journal | Page 1328

‘,/ International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056
JET Volume: 03 Issue: 07 | July-2016 www.irjet.net p-ISSN: 2395-0072

M Applications Places Systemn @

» AG (inp » AX out) - always if input is high, then

output also high for one cycle. = S & @ @ a &

Previous Next n out Normal Fit Lert Right

» AG EF enabled - From reachable state there should L e e L 1o ar 12158)
be the path starts at one state then reaches state ning: Some variables are unuzes in mosel Counter.
where enable is asserted.

ome variables are unused in model counter fsm.
hierarchy stats

s - Counter, Instance name — Counter
- 1, outputs - B, variables — 4, tables — 8, latches — 0, children — 1
vis> print_models
Model name = counter fsm

> AG (REQ_)AF ACK) —thiS means for reachable state IPpUTs - 1. oUTPUTs - 3. variables - 145, tables - 131. latches - o

Model name = Counter

AG, REQ is asserted in future state AF and finally inputs = 1. outputs - 8. varisbles - 4. tebles - 9. lstches - 0

. vis flatten hierarchy
ACK is asserted. viss print network atats
Countor combimationale?8 piml po= latches—8 pseudo=d consteS edges-186
vis~ test netwark_acyciic
Network has no combinational cycles

wis= print_io

4.2 Fairness Constraints
e Tiatren nierarcny
i Bt meoare srare O Oresting new one.
It is important for model checking formal verification. Y Tlactan niarareny 0 MU TR ISR pmemanns o e

Combination of CTL and fairness constraints gives better o S agches
assertion and itis called as fair CTL. It is same as CTL, but its
semantics is different from CTL which is having fair paths

where all path quantifiers are mentioned in it. [1] M appiications Piaces System @
e e e e iy

Ele Edit Wiew lmage Go Help

< - @ o o 2o =

Prewvious Mext n Sut Normal Fit Lert Right

Fig-5(a): Commands to build flattened network

TrEe TR wETITY
5. Formal verification on Counter FSM Metnon Fromiier, 1o inks. 19 sources. 26 total vertices. 282 mdd nodes
Wi ratEase 2 (compitea 19-mar-16 at 12:56 P
& naTwors name: Councar
 emaraten I e ey 16 17i18:01 2616

Counter is a simple component helps in incrementing or p

L e .
) R ol Ere ctkapreve 1SYZE v sy
decrementing the counts or numbers. It has vastapplications COUNTERS . cinzpravests snadow T 3
s : . . : : COUNTERO . <T=800001%NS Shadow E 3 ¢4, 5)
in mathematical field. Example: used in ALU unit, excel CSLRTERS hil e i3t e
CUNTERS X2 ene Lntan. GO FORE T A L
applications etc. A 3-bit up-counter state diagram is shown in COUNTERS ClRIpravisns Smadow 5 :as
CoimTens pr e I3 4 el 1
the ﬁg-4. cou hee -
OUtZENS shadow 11 2 (25)
o Theen FESE
Sui3ens Latan. R]
Sitiens Lnian. HERE S
TRt S 0 R O
AR P A Y
Byt "TRETAETL SIAIIINS fL T eiin oo mare

vis release 2.4 (compiled 19-Mar-16 at 12:56 FM)
network name: Counter

Ssnecated: Tus May 10 317:28:82 2zeis

I

1280 = BOO pixels 138.2 KB 100%

[w| [3 snena rinal project || £ counter [e counter= prng

Fig-5(b): Ordering, computing FSM information, advanced
ordering and FSM traversal commands.

After applying CTL properties and fair CTL, during model
checking, the results are obtained in the form of pass or fail
which is shown in the fig-6

Fig-4: State diagram of 3-bit counter FSM

MW Applications Flaces Systern T
Again there are two types in FSM which is Mealy machine fie Ean siew image mo e -
. . <« = = 2
and Moore machine. Counter belongs to Mealy machine type roveus i | SR SR wiha G Cor o

Deleting CUrrent Network and Creating new one.
vizne model check counter.c

where itrequires present state, next state and given input. [2] A Tt R R T RS (counene precneseT - arccounTERe meanEsET) 1)

¥ MC. Tormula failed --- AG((COUNTERD .p1o—RESET -~ AF(COUNTERG. nes—STATEL)))
NoMCL Tormula poseen Col 1 CAGCeOUNTERG Bra e aTATEL e AR (e OUNTERD M TATER))1
MC: formula failed

5.1 Design, commands and results regarding D
counter FSM oI ThE

MC: tormula passed
WMC: Tormula failed ---

vis= init_verify
Deleting current netwerk
vis= model check e

The design part of counter requires 8 states along with reset PRI R p -:::T;E AT AL,

state. It consists of present state (prs) and next state (nxs) to RIS TINTE T AniinIy Aty
express the state changes. Different state parameters should 2 oo fermas Blaime o cai oA
be initialized before. It is synchronous counter and FSM Zre
design should be done using case statements. e—

|w#| | B =nena rinal project || £ counter Il countert png
Some commands which are used to check out the design Fig-6: Results regarding counter FSM after model checking.
after conversion from Verilog to VL2ZMV are given in the fig-
5(a) and fig-5(b). Model checking in the formal verification checks for the
corner cases and finally gives the actual result.

© 2016,IRJET | ImpactFactor value: 4.45 | ISO09001:2008 Certified Journal | Page 1329

‘,/ International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

JET

Volume: 03 Issue: 07 | July-2016

www.irjet.net

p-ISSN: 2395-0072

6. Formal verification on I2C protocol

It creates the Communication between IC’s, processors
and microcontrollers. There are two types of nodes present.
Those are master node which sends or receives the data
information and slave node which receives or sends the data
information. Block diagram of 12C protocol is shown in the

fig-7.

VDD

hMaster

MMicro-controller|

v b
» -
Pull-up
resistors
SDA
SCL
Slavel Slave 2 Slave #

Fig-7: Block diagram of 12C protocol

There are two bus lines. Those are serial clock line and
serial data line. Synchronous clock line is for timing purpose
and data line is for sending and receiving data between

master a

nd slave. Supply voltage is given to buses to maintain

the normal condition. Otherwise it is in ideal state. [5]

6.112C

Design and operation

Using 24 bit [2C which consist of start bits, slave address
bits, acknowledgement bits, slave memory address bits, slave
data bits and stop bits. Totally there are 32 states in an [2C

design. [

2]

Some steps involved during operation are mentioned

below.
>

Master pulls SCL to “HIGH” and SDA to “LOW” to
start the operation.

Master sends address of slave.

Master waits for acknowledgement bit from the
slave.

Master sends read(1) or write(0) operation to slave.
Again waits for acknowledgement bit.

Master pulls SDA to “HIGH” and SCL to “HIGH” to
stop the operation.

6.2 Commands and results regarding 12C protocol

Fig-8(a) and fig-8(b) shows the executed commands on
12C protocol. Fig-8(c) and fig-8(d) are regarding results after
finishing model checking.

M applications Placas System @

[} 12cprotolo.png

Fle Edit View |mage Ge Help

% e 8 @ 9
T e n oW Normal At et mignt
Warring: Sowe varisbies are wrused in medsl i3 sTeve:
ien Tnit-weriry
UisZ Simutate n 100
vis release 2.4 (complled 19-Mar
PR
4 Simiiation vectors have been randemly generated

~16 at 12:56 PM)

Linputs clk
.latches IZCDATA<0> I2CDATA<10> IZCDATA<11> IZCDATA<12> I2CDATA<13> I2CDATA<1l4> I2CDATA<15> IZCDATA<16= I
A=20> I2CDATA=21> 12CDATA<22> LZCOATA<23> IZCDATA<2> I2CDATA<3> I2CDATA=A> I[ZCOATA=S5> IZCDATA<6> IZCDATA<
Xt ST 12C_master.pr st 12c slawe.S00 12c_slave.nxt St 12c _slave.pr st

_outputs

initial © B O L B O O OO O 0 1000060001610 10 RESET RESET B RESET RESET

(start_vectors

clk ; T2CDATA=6= T2CDATA=10= T2CDATA=11= T2CDATA=12= I2CDATA=13= I2CDATA=ld= I2CDATA=15= I2CDATA=16= 12
=20= T2CDATA=21= T2CDATA=22= I2CDATA=23= T2CDATA=2>= T2CDATA=3= T2CDATA=4= T2CDATA=5= T2CDATA=6= T2CDATA=7
t_st i2c_master.pr st i2c_slave.SD0 i2c_slave.nxt_st i2c_slave.pr_st ;

eo0o0o o sooo 18 1010 RESET RESET RESET RESET
1

1:000 ceooo1 0o o 1 e e
0c:o0o0o0000 0 1 © 000010101 1STATEL RESET 1 STATEL RESET
1:000000000001000000010101 1STATEL STATEL 1 STATEL STATEL
1:0000000000010000060010101 0STATEZ STATEL 0 STATE2Z STATEL

© ;2000000006001 000000010101 0STATE2 STATE2 © STATEZ STATEZ

©. 0P 000 B0000010000660 106101 0STATES STATEZ 8 STATES STATEZ
©.0PO000EE000B001000000016 101 6STATES STATES 8 STATE3 STATES

© 0000060000001 0000000 106101 1STATEd STATES O STATE4 STATES

©: 600000000001 00006O01L0101 1STATES STATEd 1 STATE4 STATE
1:600000000001600060016101 0STATES STATE4A 1 STATES STATE4

© ;000000000601 660006010101 0STATES STATES © STATES STATES
1:9000008 0080 1985980231010l 05TaTen STATES 8 STATES STATER

©: 060606060606 0610066066161016sSTATEG STATEG 6 STATEG STATE6 :

\g] [88 (root@iocalhost: —/vis-2 4] | G@ root (& visza |l & root@iocainost: ~rvis

1280 % BOO pixels 1215 KB 100%

|| [2 sneha rinal project || B3 i2c_new I

5

[i2eproto10 png

Fig-8(a): Simulation results

M Applications Places System &

= _izeprotozprno |

File Edit View |mage Go Help

> & @ @ @ ¢ =

Previous Next In out Normal Fit Lert Right

[root@localhost vis-2.41# ./vis
vis release 2.4 (compiled 19-Mar-16 at 12:56 PM)
vis= read_plif_mv 12cproto.mv
Warning: Seme variables are unused in model 1Zc_slave.
Vis> 1nit_werify
vis= compute reach -v 1
h inTo: Computing reachable States using the 1wls95 image computation metnod.
Printing Information about Image method: IWLS95
Threshold Value of Bdd Size For Creating Clusters — 5000
Use “"set image cluster size value" to set this to desired value)
Verbosity = 0
(Use "set image verbosity value® to set this to desired value)
Wl= 6 W2=1W3=1wa-=
(Use "set image W? value" to set these to desired values)
Sharea size of transition relation for Torward image computation 1s

5072 BDD nodes (2 components)

alysis results:
63

FSM depth —

roachable states = 61
80D size - 714
analysis time = 0.03
reachability amalysis - complete
vis= []

G
1280 x 800 pixels 84.6 KB 100%
le®| [2 sneha final protect || £ i2¢ new

el 1zcprota? ona

Fig-8(b): Commands on computation information

M appicatons Paces system @)
] iZeprotoll.png
Fle Edit Wiew Image Go Help

hd] 9 & 4§ g %
Previous Next in out Normal it Left Right
TTAG(T(AF(12C 5Lave.pr_st=STATE/)])]
AG(((12¢_slave.pr_st=STATE5 * 12¢_master.pr_st=STATE2) -> EX(12¢_slave.pr_st=STATEL)))
SU=STATELG) -> AX(12C mast S1=STATE1))
St=STATES)))
St=STATE6))

MO Tormula paseed -
MC: formula passed --
#MC: Tormula passed --
#MC: Tormula failed

#MC: Tormula passed ---

#MC: Tormula Tailed ---
MC: Tormula passed -
#MC: Tormula Tailed --
MC: Tormula passed ---

|(AG(((12¢ master.pr st-STATE3 * 12¢ master.pr st-STATES) -> |(AX(1Z2c master.pr st-STATES
AG(((12¢ _master.pr st=STATE4 * 12c slave.pr st=STATE6) -> | (AX(12¢ master.pr st=STATELO))
| (AG(AF (12C_master.pr st=STATE1S)))

AF(12C_slave.pr St=RESET)

)
1)
1)
1))
3l

viss init verify
Deleting current network and creating new one.

vis> model check 12cproto.ctl

MC: formula passed --- AG((i2c_master.pr_st-RESET -> AF(i2c_slave.pr_st=RESET)))

MC: formula passed --- AG((i2c_master.pr_st=RESET -= AF(i2c_master.pr_st=STATEL)))

MC: formula passed --- AG((12c_slave.pr_st=RESET - AF(i2c_slave.pr_st=STATE)))

MC: formula failed --- |(AG((12c_master.pr_st=STATEL -= AF(i2c_master.pr_st=STATE2))))
MC: formula failed --- |(AG((12¢ slave.pr st=STATEL -» AF(i2c Slave.pr St=STATE2))))
WMC: formula failed --- AG((12c_slave.pr_st=STATEL * AF(12c_master.pr_st=STATES)))

MC: fornula passed -- s

#MC: fornula passed --
MC: Tormula Tailed
#MC: Tormula Tailed ---
#MC: Tormula passed
#MC: Tormula passed
#MC: Tormula railea
#MC: formula passed -
#MC: formula passed -
#MC: formula passed -
MC: formula passed ---
MC: formula failed
MC: formula passed
HC: formula failed

* AF(12¢ master.pr st=STATES))))
5T-STATE10)))

ST=STATE3 * 12¢ Master.pr St-STATEB) -» EX(12C master.pr ST=STATE9))))
AG(((12¢ Master.pr st=STATEG * 12C Master.pr st=STATE7) -> EX(12C Master.pr St=STATES)))
AG(1((12C Slave.pr st=STATEL * 12C Master.pr st=STATES)))

AG((12C_master.pr St=STATE9 -» |(AF(12C MASter.pr St=STATEE))))

1(AG((12C_slave.pr st=STATE2 -> ! (AF(12c_slave.pr st=STATE10)))))
1(AG(! (AF(12¢_slave.pr_st=STATE?))))

AG(((12¢_slave.pr_st=STATES * 12c_master.pr_st=STATE2) -> EX(12c_slave.pr_st=STATEL)))
AG(((12c_master.pr_st=STATE1S * 12c_master.pr_st=STATELG) -> AX(12c_master.pr_st=STATE1)))
1(AG(((12¢_slave.pr_st=STATEl * 12c_slave.pr_st=STATEB) -> |(EX(12c_slave.pr_st=STATES)))))
AG(((12c_master.pr_st=STATE2 * i2c_master.pr_st=STATE7) -> |(EX(i2c_master.pr_st=STATEG))))
1(AG(((12¢_master.pr_st=STATE3 * i2c_master.pr_st=STATE9) -> |(AX(i2c_master.pr_st=STATES)))))
AG(((i2c_master.pr_st=STATE4 * i2c_slave.pr_st=STATEG) -> |(AX(i2c_master.pr_st=STATE0))))

| (AG(AF (12c_master.pr_st=STATE15)))

AF((12c slave.pr st-RESET -> AG(i2c slave.pr st=STATE6)))

MC: formula passed ---
MC: formula failed ---
g hC: fornula passsd -
C

1280 BOO pixels 1954 KB 100%

[[2 snena final project | £ 12c_new | ler! i2cproto11.png |

Fig-8(c): Obtained CTL results on model checking

© 2016, IRJET |

Impact Factor value: 4.45

ISO 9001:2008 Certified Journal | Page 1330

u, International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

JET Volume: 03 Issue: 07 | July-2016 www.irjet.net p-ISSN: 2395-0072
_®® pppucations Places System @& [6] Lopamudra Sen and SubirK.Roy, DFT logic
verification through property based formal methods,

< = e, e, & 2010 FMCAD Inc.

[root@localhost wis-2.4]# gedit iZcproto.fair

[root@localhost wis-2.41# ./vis

wis release 2.4 (compiled 19-Mar-16 at 12:56 FPM)

wis> read_blif

usage: read_blif [-c] [-2 encoding_Tile] [-h] [-w] Tile
-c table canonicalization
-e read a Tile into the current node using encoding Tile
-h print the command usage
- werbose

vwis=> read_blif_mwv iZcproto.mwv

Warning: Some wvariables are unused in model i2Z2c_slave.

wis= init wverify

wis=> read_TfTairness iZ2cproto.fair

vis> print_fairness

Fairness constraint:

'(i2c_master.pr_st=RESET) ;

1(i2c_master.pr_st=5TATE1l) ;

'(i2c_slave.pr_ st=STATE1l);

wis> lang_empty -1i

LE: language 1is not empty

wis> []

Fig-8(d): Obtained Fairness constraints results on model
checking

By the concept of model checking in FPV which is power
full method involved in verification.

7. CONCLUSIONS

In this paper we study about FPV designs using VIS using
model checking properties, can be applied for controlling
designs, successfully verified two control oriented designs
counter and I2C, Corner cases are verified using FPV.

ACKNOWLEDGEMENT

Author would like to thank Mrs. Roopa. G for her support
to this project and also author wants to express an esteemed
gratitude to Mr. Yaseen Basha for his guidance to this project.
Also thank full to husband, parents, and friends.

REFERENCES

[1] vis@ic.eecs.berkely.edu VIS group, University of
California, Berkeley, University of Colorado, Boulder.

[2] www.opencores.org

[3] Janick Bergeron, Writing Testbenches - Functional
verification of HDL models, Springer, 2nd edition
2003

[4] A. Aziz T, Cheng and R. Hojati. “HSIS: BDD-based
environment for formal verification. In university of
California at Berkeley, 1997

[5] Nirmal Saeed, Ayesha Inam, Aisha Khan, Osman
Hasan, “V-HOLT verifier-An Automatic Formal
Verification Tool for Combinational
Circuits,Islamabad @2012 IEEE

© 2016,IRJET | ImpactFactor value: 4.45 | I1SO09001:2008 Certified Journal | Page 1331

mailto:vis@ic.eecs.berkely.edu
http://www.opencores.org/

