
          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395 -0056 

               Volume: 03 Issue: 07 | July-2016                      www.irjet.net                                                               p-ISSN: 2395-0072 

 

© 2016, IRJET       |       Impact Factor value: 4.45        |       ISO 9001:2008 Certified Journal       |        Page 96 
 

LQR Control of Piezoelectric Actuators 
Merlin ElezabethThomas,AnuGopinath 

P.G Student, Assistant professor 
Dept.Electrical and Electronics 

Mar Baselios College of Engineering and Technology 

Thiruvananthapuram,Kerala,India 

---------------------------------------------------------------------***--------------------------------------------------------------------
Abstract—Piezoelectric actuators (PEAs) uses the inverse piezoelectric effect of piezoelectric materials to generate 
forces and displacements. The PEA can be modeled as a linear dynamic system with matched uncertainties. Pole 
placement method is one of the classic control theories that is used in system control for desired performance. This 
method helps to set the desired pole location and to move the pole location of the system to that desired pole location to 
get the desired system response. Linear Quadratic Regulator (LQR) is the optimal theory of pole placement method. To 
find the optimal gains in LQR the optimal performance index should be defined . 
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1.INTRODUCTION 

 

Piezoelectric actuators (PEAs) have been used in micro and nano positioning systems due to their fine 

displacement resolution and large actuation force [1]. In these applications, accurate models of PEAs are required to 

understand their dynamic behaviors and controller design. A common category of PEA models takes the form of a 

cascade of three sub-models, each of which representing the effect of hysteresis, creep, and vibration dynamics, 

respectively [2]. Most of the PEAs have a non-negative input voltage range and their corresponding hysteresis 

behaviors subject to such one-sided input range are referred to as one-sided hysteresis which contains an initial 

ascending curve in addition to the hysteresis loops. A number of models for the PEA have been reported, and they 

can be generally classified into two categories: phenomenon-based models and physics-based models. The 

phenomenon-based models of PEA are developed based on the experimental results alone. The hysteresis and the 

vibration dynamics are combined to form a dynamic or rate-dependent hysteresis model for PEAs. In the physics-

based models of PEA the linear and nonlinear effects are decoupled by means of individual sub-models of PEAs. In 

[5] the PEA was modeled as a cascade of a nonlinear sub-model for the rate-independent hysteresis and a linear 

sub-model for the vibration dynamics. 

              Based on the models developed for PEAs, various control schemes have been developed and reported to 

improve ASSthe PEA performance. A significant number of such control schemes are open-loop inversion based or 

feed forward [1], in which the control action is generated based on the inverse of the PEA model. The feed forward 

controllers are developed to compensate for the rate-independent hysteresistime applications. Such feed forward 

controllers works in the cases with low operating frequencies, where hysteresis is the dominant effect. There are 

two problems associated with the feed forward schemes, which include an accurate model for PEA and the 

computational effort to invert the model. So that the controllers are developed based on the linear nominal model of 

the PEA dynamics. The nonlinearity and uncertainty due to hysteresis and external-loading changes are treated as 

disturbances to be suppressed. For performance improvement at both low- and high- frequencies, a high-gain 

feedback is desirable. But this may not be feasible due to the system stability. With the increase in the operating 

frequency, there will be a fast phase loss in the frequency response of the closed-loop system due to the high-
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frequency PEA dynamics. This tends to destabilize the system. As a result, high gains are limited for use at high 

frequencies. One method for improvement is the use of a notch filter to lower the first resonant peak of the system, 

thus increasing the gain margin [8]. Other method for improvement is the use of disturbance observers [3] to 

estimate and then provide the PEA with a portion of the control input required for disturbance compensation, 

which allows for the use of low-gain feedback. 

Robust controllers [3] can be designed to minimize the effects of the disturbances based on a cost function. 

If the disturbances can be treated as an unknown input applied to the PEA through the same channel as the known 

input, referred to as matched uncertainty or unknown input, the effect of the disturbances on the PEA performance 

can be theoretically completely rejected by the use of sliding-mode-based –controllers. The theory of optimal 

control is concerned with operating a dynamic system at minimum cost. The LQR algorithm reduces the amount of 

work done by the control systems engineer to optimize the controller.  

The objective of this paper are to develop a LQR control for PEA. The organization of the rest of this paper 

can be summarized as follows. The modeling of PEA are explained in Section 2. The LQR control for PEA-driven 

system is developed in Section 3. Simulation results is developed in Section 4. 

2.  PEA MATHEMATICAL MODELING 

The modeling and control of PEAs has proven to be a challenging task. Fig.1 shows the schematic of a PEA 

with the end-effector connected to the base through flexure hinges and driven by a piezoelectric element under an 

input voltage of u(t), (t) is the external load applied to the end-effector and y(t) the displacement of the end-

effector or the system output. The PEA is represented as a physics-based model. The linear and nonlinear effects of 

the PEA are decoupled by means of individual sub-models that are connected in cascade. 

The block diagram of PEA model is shown in Fig. 2. In this, the blocks of H, V and  represents the PEA hysteresis, 

vibration dynamics and creep respectively; f(t) and  represents represent the internal actuation force and the 

output displacement of the end-effector without creep, respectively [2]. 

 

Fig-1:Schematic of a PEA 

The block H represents the nonlinear hysteretic relationship between the input voltage, u(t) and the internal 

actuating force, f(t). These hysteresis is the dominant form of PEA nonlinearity [4] and can be represented by means 

of rate-independent hysteresis models, such as the classical Preisach hysteresis model [1],or the differential-

equation-based model [5]. 

https://en.wikipedia.org/wiki/Optimal_control
https://en.wikipedia.org/wiki/Optimal_control
https://en.wikipedia.org/wiki/Optimal_control
https://en.wikipedia.org/wiki/Dynamic_system
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Fig-2:Physics-based model of PEA 

For SM-based controllers, the effect of hysteresis is treated as a matched unknown input to the block V, 

hence the accurate representation of hysteresis is not needed. The block V represents the vibration dynamics 

relating the internal actuating force, f(t)and the external force, to the end-effector displacement without 

considering the creep. The vibration dynamics of a PEA can be approximated by a linear combination of several 

second-order systems or one second-order system if the mass of the end-effector driven by the piezoelectric 

element is much larger than that of the piezoelectric element itself. The block in Fig.2 represents the creep, which 

can be either linear [1]or nonlinear [7]. Here, a linear sub-model is assumed to be used for and then the blocks of 

Fc and V are swapped without changing the output displacement, y(t). If the second-order system is used for the 

block V and the approximation error, along with the effects of , H , and Fc , are lumped together as the matched 

unknown input to the block V , one has 

 

                                                                                                (1) 

where ξ, and are the damping ratio, the natural frequency, and the steady state gain of the second-order 

system, respectively. The input to V is represented by Ku(t)+K , where Kis a known nominal gain and ε(t) is an 

unknown input added to u(t). The output induced by ε(t) accounts for effects such as hysteresis, creep, the external 

loads, and the error induced by approximating V with a second-order system. 

If the input voltage V is applied to the piezoelectric material, the output displacement X will be generated. The 

relationship between V and X is given by, 

 

                                                                                                (2) 

                                                                                                (3) 

where A,B and C are the system constants. To determine these constants system identification methods can be used. 

 

                                                                                                 (4) 

The unknowns are lumped together to be considered as the matched unknown input to the second order system. 

 

 

                                                                                         (5) 
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On the following assumption                       ,                   and 

 

 

                                                                                     (6) 

The state space can be represented as, 

                                                                              (7) 

  

The state space representation for the PEA is 

 

 

 

 

This equation  is referred to as the nominal model of the PEA if  =0. The states of the PEA model are 

and . These states represents the displacement and the velocity of the end-effector. The model parameters 

were identified and given by ξ = 0.82, = 5450 rad/s, and K = 0.142μm. 

3.  LQR CONTROL 

             The case where the system dynamics are described by a set of linear differential equations and the cost is 

described by a quadratic function is called the LQ problem. One of the main results in the theory is that the solution 

is provided by the linear-quadratic regulator (LQR). The cost function can be defined as a sum of the deviations of 

key measurements, desired altitude or process temperature, from their desired values. The LQR algorithm reduces 

the amount of work done by the control systems engineer to optimize the controller. However, the engineer have 

to specify the cost function parameters, and compare the results with the specified design goals. The LQR 

algorithm is also an automated way of finding an appropriate state-feedback controller. The value of R can be 

assumed.The command [K,P,E]=lqr(A,B,Q,R,N) solves the Algebraic Riccati Equation. 

 

                         x˙ = Ax + Bu.                                           (10) 

                       x˙ = (A − BK)x.                                          (11)                                      
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https://en.wikipedia.org/wiki/Linear_differential_equation
https://en.wikipedia.org/wiki/Quadratic_polynomial
https://en.wikipedia.org/wiki/Functional_(mathematics)
https://en.wikipedia.org/wiki/State_space_(controls)
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The closed loop state space representation of LQR with gain K will be, 

 

 

 

 

 

                                                                             (12) 

 

                                                                             (13) 

                                                                             (14) 

 

4. SIMULATIONS 

Tracking control of PEAs is a challenging task. A LQR controller is simulated for PEA tracking. 

 

Fig-3:Simulation without controller 
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The step input given is 5* m. The result for this simulation is obtained in Fig.4. 
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Fig-4:Result for tracking control using LQR 

The MATLAB coding can be done. The values of  K 

areobtained.K =  1.0e-0.5* 0.6735  and K1 =1.0e- 0.5*0.0001. The simulation by using the K value is as shown. 

 

Fig-5:Simulation using LQR controller 

The result for this simulation is obtained in Fig.6. The precompensation filter is used to track the desired path. 

 

 

Fig-6:Result for LQR control 
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5.  CONCLUSION 

Tracking control of PEAs has been proven to be a challenging task, due to the involvement of the PEA 

nonlinear properties such as hysteresis, creep and dynamics. A number of control schemes based on the state 

feedback have been developed for improved performance. This paper presents the modeling and development of 

LQR control for PEA tracking. The existing control methods shows promising for use in the PEA tracking control due 

to their capability of rejecting matched nonlinearities. 
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